更新算法模版

This commit is contained in:
johnjim0816
2022-11-06 12:15:36 +08:00
parent 466a17707f
commit dc78698262
256 changed files with 17282 additions and 10229 deletions

View File

@@ -5,51 +5,82 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2022-08-15 18:12:13
LastEditTime: 2022-11-06 00:44:56
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import datetime
import argparse
from common.utils import save_results,save_args,plot_rewards
import gym
from envs.wrappers import CliffWalkingWapper
from envs.register import register_env
from common.utils import merge_class_attrs,all_seed
from common.launcher import Launcher
from MonteCarlo.agent import FisrtVisitMC
from envs.racetrack import RacetrackEnv
from MonteCarlo.config.config import GeneralConfigMC,AlgoConfigMC
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
def get_args():
""" 超参数
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='First-Visit MC',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='Racetrack',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.9,type=float,help="discounted factor")
parser.add_argument('--epsilon',default=0.15,type=float,help="the probability to select a random action")
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' )
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
n_actions = env.action_space.n
agent = FisrtVisitMC(n_actions, cfg)
return env,agent
class Main(Launcher):
def __init__(self) -> None:
super().__init__()
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigMC())
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigMC())
def env_agent_config(self,cfg,logger):
''' create env and agent
'''
register_env(cfg.env_name)
env = gym.make(cfg.env_name,new_step_api=False) # create env
if cfg.env_name == 'CliffWalking-v0':
env = CliffWalkingWapper(env)
if cfg.seed !=0: # set random seed
all_seed(env,seed=cfg.seed)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
agent = FisrtVisitMC(cfg)
return env,agent
def train_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
one_ep_transition = []
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.sample_action(state) # sample action
next_state, reward, terminated, info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
one_ep_transition.append((state, action, reward)) # save transitions
agent.update(one_ep_transition) # update agent
state = next_state # update next state for env
ep_reward += reward #
if terminated:
break
return agent,ep_reward,ep_step
def test_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.predict_action(state) # sample action
next_state, reward, terminated, info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
state = next_state # update next state for env
ep_reward += reward #
if terminated:
break
return agent,ep_reward,ep_step
def train(cfg, env, agent):
print("开始训练!")
@@ -93,18 +124,5 @@ def test(cfg, env, agent):
return {'rewards':rewards}
if __name__ == "__main__":
cfg = get_args()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
save_args(cfg,path = cfg.result_path) # 保存参数到模型路径上
agent.save(path = cfg.model_path) # 保存模型
save_results(res_dic, tag = 'train', path = cfg.result_path)
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train")
# 测试
env, agent = env_agent_config(cfg) # 也可以不加,加这一行的是为了避免训练之后环境可能会出现问题,因此新建一个环境用于测试
agent.load(path = cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results(res_dic, tag='test',
path = cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test") # 画出结果
main = Main()
main.run()