更新算法模版

This commit is contained in:
johnjim0816
2022-11-06 12:15:36 +08:00
parent 466a17707f
commit dc78698262
256 changed files with 17282 additions and 10229 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-09 20:25:52
@LastEditor: John
LastEditTime: 2022-06-09 19:04:44
LastEditTime: 2022-09-27 15:43:21
@Discription:
@Environment: python 3.7.7
'''
@@ -14,96 +14,45 @@ import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class Actor(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, n_actions)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = torch.tanh(self.linear3(x))
return x
class Critic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
# 随机初始化为较小的值
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
# 按维数1拼接
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class DDPG:
def __init__(self, n_states, n_actions, cfg):
self.device = torch.device(cfg.device)
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(self.device)
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(self.device)
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(self.device)
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(self.device)
# 复制参数到目标网络
class DDPG:
def __init__(self, models,memories,cfg):
self.device = torch.device(cfg['device'])
self.critic = models['critic'].to(self.device)
self.target_critic = models['critic'].to(self.device)
self.actor = models['actor'].to(self.device)
self.target_actor = models['actor'].to(self.device)
# copy weights from critic to target_critic
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
target_param.data.copy_(param.data)
# copy weights from actor to target_actor
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
target_param.data.copy_(param.data)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg['critic_lr'])
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg['actor_lr'])
self.memory = memories['memory']
self.batch_size = cfg['batch_size']
self.gamma = cfg['gamma']
self.tau = cfg['tau']
self.critic_optimizer = optim.Adam(
self.critic.parameters(), lr=cfg.critic_lr)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
self.batch_size = cfg.batch_size
self.soft_tau = cfg.soft_tau # 软更新参数
self.gamma = cfg.gamma
def choose_action(self, state):
def sample_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action = self.actor(state)
return action.detach().cpu().numpy()[0, 0]
@torch.no_grad()
def predict_action(self, state):
''' predict action
'''
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action = self.actor(state)
return action.cpu().numpy()[0, 0]
def update(self):
if len(self.memory) < self.batch_size: # memory 中不满足一个批量时,不更新策略
if len(self.memory) < self.batch_size: # when memory size is less than batch size, return
return
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
# sample a random minibatch of N transitions from R
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
# 转变为张量
# convert to tensor
state = torch.FloatTensor(np.array(state)).to(self.device)
next_state = torch.FloatTensor(np.array(next_state)).to(self.device)
action = torch.FloatTensor(np.array(action)).to(self.device)
@@ -126,19 +75,22 @@ class DDPG:
self.critic_optimizer.zero_grad()
value_loss.backward()
self.critic_optimizer.step()
# 软更新
# soft update
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - self.soft_tau) +
param.data * self.soft_tau
target_param.data * (1.0 - self.tau) +
param.data * self.tau
)
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - self.soft_tau) +
param.data * self.soft_tau
target_param.data * (1.0 - self.tau) +
param.data * self.tau
)
def save(self,path):
torch.save(self.actor.state_dict(), path+'checkpoint.pt')
def save_model(self,path):
from pathlib import Path
# create path
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(self.actor.state_dict(), f"{path}/actor_checkpoint.pt")
def load(self,path):
self.actor.load_state_dict(torch.load(path+'checkpoint.pt'))
def load_model(self,path):
self.actor.load_state_dict(torch.load(f"{path}/actor_checkpoint.pt"))