fix some typos
This commit is contained in:
@@ -268,7 +268,7 @@ $$
|
||||
|
||||
## Exploration
|
||||
|
||||
第二个 tip 是`Exploration`。当我们使用 Q-function 的时候,policy 完全 depend on Q-function。给定某一个 state,你就穷举所有的 a, 看哪个 a 可以让 Q value 最大,它就是采取的action。那其实这个跟 policy gradient 不一样,在做 policy gradient 的时候,output 其实是 stochastic 的。我们 output 一个action 的distribution,根据这个action 的distribution 去做sample, 所以在policy gradient 里面,你每次采取的action 是不一样的,是有随机性的。那像这种 Q-function, 如果你采取的action 总是固定的,会有什么问题呢?你会遇到的问题就是这不是一个好的收集 data 的方式。因为假设我们今天真的要估某一个state,你可以采取 action $a_{1}$, $a_{2}$, $a_{3}$。你要估测在某一个state 采取某一个action 会得到的Q value,你一定要在那一个 state 采取过那一个action,才估得出它的value。如果你没有在那个state 采取过那个action,你其实估不出那个value 的。当然如果是用 deep 的network,就你的 Q-function 其实是一个 network,这种情形可能会没有那么严重。但是 in general 而言,假设 Q-function 是一个 table,没有看过的 state-action pair,它就是估不出值来。Network 也是会有一样的问题就是, 只是没有那么严重。所以今天假设你在某一个state,action $a_{1}$, $a_{2}$, $a_{3}$ 你都没有采取过,那你估出来的 $Q(s,a_{1})$, $Q(s,a_{2})$, $Q(s,a_{3})$ 的 value 可能都是一样的,就都是一个初始值,比如说 0,即
|
||||
**第二个 tip 是`Exploration`。**当我们使用 Q-function 的时候,policy 完全 depend on Q-function。给定某一个 state,你就穷举所有的 a, 看哪个 a 可以让 Q value 最大,它就是采取的 action。那其实这个跟 policy gradient 不一样,在做 policy gradient 的时候,output 其实是 stochastic 的。我们 output 一个 action 的 distribution,根据这个 action 的distribution 去做sample, 所以在 policy gradient 里面,你每次采取的 action 是不一样的,是有随机性的。那像这种 Q-function, 如果你采取的 action 总是固定的,会有什么问题呢?你会遇到的问题就是这不是一个好的收集 data 的方式。因为假设我们今天真的要估某一个 state,你可以采取 action $a_{1}$, $a_{2}$, $a_{3}$。你要估测在某一个state 采取某一个 action 会得到的 Q value,你一定要在那一个 state 采取过那一个 action,才估得出它的 value。如果你没有在那个 state 采取过那个action,你其实估不出那个 value 的。当然如果是用 deep 的network,就你的 Q-function 其实是一个 network,这种情形可能会没有那么严重。但是 in general 而言,假设 Q-function 是一个 table,没有看过的 state-action pair,它就是估不出值来。Network 也是会有一样的问题就是, 只是没有那么严重。所以今天假设你在某一个 state,action $a_{1}$, $a_{2}$, $a_{3}$ 你都没有采取过,那你估出来的 $Q(s,a_{1})$, $Q(s,a_{2})$, $Q(s,a_{3})$ 的 value 可能都是一样的,就都是一个初始值,比如说 0,即
|
||||
|
||||
$$
|
||||
\begin{array}{l}
|
||||
@@ -278,23 +278,25 @@ Q(s, a_3)=0
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
但是假设你在state s,你 sample 过某一个action $a_{2}$ ,它得到的值是 positive 的 reward。那 $Q(s, a_2)$ 就会比其他的action 都要好。在采取action 的时候, 就看说谁的Q value 最大就采取谁,所以之后你永远都只会 sample 到 $a_{2}$,其他的action 就再也不会被做了,所以就会有问题。就好像说你进去一个餐厅吃饭,其实你都很难选。你今天点了某一个东西以后,假说点了某一样东西, 比如说椒麻鸡,你觉得还可以。接下来你每次去就都会点椒麻鸡,再也不会点别的东西了,那你就不知道说别的东西是不是会比椒麻鸡好吃,这个是一样的问题。
|
||||
但是假设你在 state s,你 sample 过某一个 action $a_{2}$ ,它得到的值是 positive 的 reward。那 $Q(s, a_2)$ 就会比其他的action 都要好。在采取 action 的时候, 就看说谁的 Q value 最大就采取谁,所以之后你永远都只会 sample 到 $a_{2}$,其他的 action 就再也不会被做了,所以就会有问题。就好像说你进去一个餐厅吃饭,其实你都很难选。你今天点了某一个东西以后,假说点了某一样东西, 比如说椒麻鸡,你觉得还可以。接下来你每次去就都会点椒麻鸡,再也不会点别的东西了,那你就不知道说别的东西是不是会比椒麻鸡好吃,这个是一样的问题。
|
||||
|
||||
如果你没有好的 exploration 的话, 你在training 的时候就会遇到这种问题。举一个实际的例子, 假设你今天是用 DQN 来玩比如说`slither.io`。在玩`slither.io` 你会有一个蛇,然后它在环境里面就走来走去, 然后就吃到星星,它就加分。假设这个游戏一开始,它采取往上走,然后就吃到那个星星,它就得到分数,它就知道说往上走是positive。接下来它就再也不会采取往上走以外的action 了,所以接下来就会变成每次游戏一开始,它就往上冲,然后就死掉,再也做不了别的事。所以今天需要有exploration 的机制,需要让 machine 知道说,虽然根据之前sample 的结果,$a_2$ 好像是不错的,但你至少偶尔也试一下$a_{1}$ 跟$a_{3}$,搞不好他们更好也说不定。
|
||||
如果你没有好的 exploration 的话, 你在training 的时候就会遇到这种问题。举一个实际的例子, 假设你今天是用 DQN 来玩比如说`slither.io`。在玩`slither.io` 你会有一个蛇,然后它在环境里面就走来走去, 然后就吃到星星,它就加分。假设这个游戏一开始,它采取往上走,然后就吃到那个星星,它就得到分数,它就知道说往上走是 positive。接下来它就再也不会采取往上走以外的 action 了,所以接下来就会变成每次游戏一开始,它就往上冲,然后就死掉,再也做不了别的事。所以今天需要有 exploration 的机制,需要让 machine 知道说,虽然根据之前 sample 的结果,$a_2$ 好像是不错的,但你至少偶尔也试一下$a_{1}$ 跟 $a_{3}$,搞不好他们更好也说不定。
|
||||
|
||||
这个问题其实就是`探索-利用窘境(Exploration-Exploitation dilemma)`问题。
|
||||
|
||||
有两个方法解这个问题,一个是`Epsilon Greedy`。Epsilon Greedy 的意思是说,我们有$1-\varepsilon$ 的机率,通常$\varepsilon$ 就设一个很小的值, $1-\varepsilon$ 可能是90%,也就是90% 的机率,完全按照Q-function 来决定action。但是你有10% 的机率是随机的。通常在实现上 $\varepsilon$ 会随着时间递减。也就是在最开始的时候。因为还不知道那个action 是比较好的,所以你会花比较大的力气在做 exploration。接下来随着training 的次数越来越多。已经比较确定说哪一个Q 是比较好的。你就会减少你的exploration,你会把 $\varepsilon$ 的值变小,主要根据Q-function 来决定你的action,比较少做random,这是Epsilon Greedy。
|
||||
有两个方法解这个问题,一个是 `Epsilon Greedy`。Epsilon Greedy($\varepsilon\text{-greedy}$) 的意思是说,我们有 $1-\varepsilon$ 的概率会按照 Q-function 来决定 action,通常 $\varepsilon$ 就设一个很小的值, $1-\varepsilon$ 可能是 90%,也就是 90% 的概率会按照 Q-function 来决定 action,但是你有 10% 的机率是随机的。通常在实现上 $\varepsilon$ 会随着时间递减。在最开始的时候。因为还不知道那个 action 是比较好的,所以你会花比较大的力气在做 exploration。接下来随着 training 的次数越来越多。已经比较确定说哪一个 Q 是比较好的。你就会减少你的 exploration,你会把 $\varepsilon$ 的值变小,主要根据 Q-function 来决定你的 action,比较少做 random,这是 Epsilon Greedy。
|
||||
|
||||
还有一个方法叫做 `Boltzmann Exploration`,这个方法就比较像是 policy gradient。在 policy gradient 里面我们说network 的output 是一个 expected action space 上面的一个的 probability distribution。再根据 probability distribution 去做 sample。那其实你也可以根据 Q value 去定一个 probability distribution,假设某一个 action 的 Q value 越大,代表它越好,我们采取这个 action 的机率就越高。但是某一个 action 的 Q value 小,不代表我们不能try。所以我们有时候也要 try 那些 Q value 比较差的 action,怎么做呢?
|
||||
还有一个方法叫做 `Boltzmann Exploration`,这个方法就比较像是 policy gradient。在 policy gradient 里面我们说network 的output 是一个 expected action space 上面的一个的 probability distribution。再根据 probability distribution 去做 sample。那其实你也可以根据 Q value 去定一个 probability distribution,假设某一个 action 的 Q value 越大,代表它越好,我们采取这个 action 的机率就越高。但是某一个 action 的 Q value 小,不代表我们不能try。
|
||||
|
||||
因为 Q value 是有正有负的,所以可以它弄成一个概率,你先取 exponential,再做 normalize。然后把 $\exp(Q(s,a))$ 做 normalize 的这个概率当作是你在决定 action 的时候 sample 的概率。在实现上,Q 是一个 network,所以你有点难知道, 在一开始的时候 network 的 output 到底会长怎么样子。假设你一开始没有任何的 training data,你的参数是随机的,那给定某一个 state s,不同的 a output 的值,可能就是差不多的,所以一开始 $Q(s,a)$ 应该会倾向于是 uniform。也就是在一开始的时候,你这 个 probability distribution 算出来,它可能是比较 uniform 的。
|
||||
Q: 我们有时候也要 try 那些 Q value 比较差的 action,怎么做呢?
|
||||
|
||||
A: 因为 Q value 是有正有负的,所以可以它弄成一个概率,你先取 exponential,再做 normalize。然后把 $\exp(Q(s,a))$ 做 normalize 的这个概率当作是你在决定 action 的时候 sample 的概率。在实现上,Q 是一个 network,所以你有点难知道, 在一开始的时候 network 的 output 到底会长怎么样子。假设你一开始没有任何的 training data,你的参数是随机的,那给定某一个 state s,不同的 a output 的值,可能就是差不多的,所以一开始 $Q(s,a)$ 应该会倾向于是 uniform。也就是在一开始的时候,你这 个 probability distribution 算出来,它可能是比较 uniform 的。
|
||||
|
||||
## Experience Replay
|
||||
|
||||

|
||||
|
||||
第三个tip是 `Experience Replay(经验回放)`。 Experience Replay 会构建一个 `Replay Buffer`,Replay Buffer 又被称为 `Replay Memory`。Replay Buffer 是说现在会有某一个 policy $\pi$ 去跟环境做互动,然后它会去收集 data。我们会把所有的 data 放到一个buffer 里面,buffer 里面就存了很多data。比如说 buffer 是 5 万,这样它里面可以存 5 万笔资料,每一笔资料就是记得说,我们之前在某一个 state $s_t$,采取某一个action $a_t$,得到了 reward $r_t$。然后跳到 state $s_{t+1}$。那你用 $\pi$ 去跟环境互动很多次,把收集到的资料都放到这个 replay buffer 里面。
|
||||
**第三个 tip 是 `Experience Replay(经验回放)`。** Experience Replay 会构建一个 `Replay Buffer`,Replay Buffer 又被称为 `Replay Memory`。Replay Buffer 是说现在会有某一个 policy $\pi$ 去跟环境做互动,然后它会去收集 data。我们会把所有的 data 放到一个 buffer 里面,buffer 里面就存了很多 data。比如说 buffer 是 5 万,这样它里面可以存 5 万笔资料,每一笔资料就是记得说,我们之前在某一个 state $s_t$,采取某一个action $a_t$,得到了 reward $r_t$。然后跳到 state $s_{t+1}$。那你用 $\pi$ 去跟环境互动很多次,把收集到的资料都放到这个 replay buffer 里面。
|
||||
|
||||
这边要注意是 replay buffer 里面的 experience 可能是来自于不同的 policy,你每次拿 $\pi$ 去跟环境互动的时候,你可能只互动 10000 次,然后接下来你就更新你的 $\pi$ 了。但是这个 buffer 里面可以放 5 万笔资料,所以 5 万笔资料可能是来自于不同的 policy。Buffer 只有在它装满的时候,才会把旧的资料丢掉。所以这个 buffer 里面它其实装了很多不同的 policy 的 experiences。
|
||||
|
||||
@@ -312,7 +314,7 @@ $$
|
||||
|
||||
Q:我们明明是要观察 $\pi$ 的 value,里面混杂了一些不是 $\pi$ 的 experience ,这有没有关系?
|
||||
|
||||
A:没关系。这并不是因为过去的 $\pi$ 跟现在的 $\pi$ 很像, 就算过去的$\pi$ 没有很像,其实也是没有关系的。主要的原因是因为, 我们并不是去sample 一个trajectory,我们只sample 了一笔experience,所以跟是不是 off-policy 这件事是没有关系的。就算是off-policy,就算是这些 experience 不是来自于 $\pi$,我们其实还是可以拿这些 experience 来估测 $Q^{\pi}(s,a)$。这件事有点难解释,不过你就记得说 Experience Replay 在理论上也是没有问题的。
|
||||
A:没关系。这并不是因为过去的 $\pi$ 跟现在的 $\pi$ 很像, 就算过去的 $\pi$ 没有很像,其实也是没有关系的。主要的原因是因为, 我们并不是去 sample 一个trajectory,我们只 sample 了一笔 experience,所以跟是不是 off-policy 这件事是没有关系的。就算是 off-policy,就算是这些 experience 不是来自于 $\pi$,我们其实还是可以拿这些 experience 来估测 $Q^{\pi}(s,a)$。这件事有点难解释,不过你就记得说 Experience Replay 在理论上也是没有问题的。
|
||||
|
||||
## DQN
|
||||
|
||||
|
||||
Reference in New Issue
Block a user