updata Sarsa

This commit is contained in:
johnjim0816
2022-04-24 23:05:02 +08:00
parent ef99b4664d
commit d0d4b03f5d
2 changed files with 2 additions and 2 deletions

119
codes/Sarsa/task0.py Normal file
View File

@@ -0,0 +1,119 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 17:59:16
LastEditor: John
LastEditTime: 2022-04-24 23:03:51
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path of file
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
import torch
from envs.racetrack_env import RacetrackEnv
from Sarsa.sarsa import Sarsa
from common.utils import save_results,make_dir,plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class Config:
''' parameters for Sarsa
'''
def __init__(self):
self.algo_name = 'Qlearning'
self.env_name = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check GPU
self.result_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/models/' # path to save models
self.train_eps = 300
self.test_eps = 20
self.epsilon_start = 0.90 # start value of epsilon
self.epsilon_end = 0.01 # end value of epsilon
self.epsilon_decay = 200 # decay rate of epsilon
self.gamma = 0.99 # gamma: Gamma discount factor.
self.lr = 0.2 # learning rate: step size parameter
self.n_steps = 200
self.save = True # if save figures
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
action_dim = 9
agent = Sarsa(action_dim,cfg)
return env,agent
def train(cfg,env,agent):
rewards = []
ma_rewards = []
for i_ep in range(cfg.train_eps):
state = env.reset()
action = agent.choose_action(state)
ep_reward = 0
# while True:
for _ in range(cfg.n_steps):
next_state, reward, done = env.step(action)
ep_reward+=reward
next_action = agent.choose_action(next_state)
agent.update(state, action, reward, next_state, next_action,done)
state = next_state
action = next_action
if done:
break
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
rewards.append(ep_reward)
if (i_ep+1)%2==0:
print(f"Episode:{i_ep+1}, Reward:{ep_reward}, Epsilon:{agent.epsilon}")
return rewards,ma_rewards
def eval(cfg,env,agent):
rewards = []
ma_rewards = []
for i_ep in range(cfg.test_eps):
# Print out which episode we're on, useful for debugging.
# Generate an episode.
# An episode is an array of (state, action, reward) tuples
state = env.reset()
ep_reward = 0
while True:
# for _ in range(cfg.n_steps):
action = agent.predict_action(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
state = next_state
if done:
break
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
rewards.append(ep_reward)
if (i_ep+1)%1==0:
print("Episode:{}/{}: Reward:{}".format(i_ep+1, cfg.test_eps,ep_reward))
print('Complete evaling')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = Config()
env,agent = env_agent_config(cfg,seed=1)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards, ma_rewards, cfg, tag="train")
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='test',path=cfg.result_path)
plot_rewards(rewards, ma_rewards, cfg, tag="test")