Update chapter4_questions&keywords.md
This commit is contained in:
@@ -100,9 +100,11 @@
|
||||
\nabla logp_{\theta}(\tau|{\theta}) = \sum_{t=1}^T \nabla_{\theta}log \pi_{\theta}(a_t|s_t)
|
||||
$$
|
||||
带入第三个式子,可以将其化简为:
|
||||
$$
|
||||
\nabla_{\theta}J(\theta) =E_{\tau \sim p_{\theta}(\tau)}[{\nabla}_{\theta}logp_{\theta}(\tau)r(\tau)] = E_{\tau \sim p_{\theta}}[(\nabla_{\theta}log\pi_{\theta}(a_t|s_t))(\sum_{t=1}^Tr(s_t,a_t))] \\ = \frac{1}{N}\sum_{i=1}^N[(\sum_{t=1}^T\nabla_{\theta}log \pi_{\theta}(a_{i,t}|s_{i,t}))(\sum_{t=1}^Nr(s_{i,t},a_{i,t}))]
|
||||
$$
|
||||
$$\begin{aligned}
|
||||
\nabla_{\theta}J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[{\nabla}_{\theta}logp_{\theta}(\tau)r(\tau)] \\
|
||||
&= E_{\tau \sim p_{\theta}}[(\nabla_{\theta}log\pi_{\theta}(a_t|s_t))(\sum_{t=1}^Tr(s_t,a_t))] \\
|
||||
&= \frac{1}{N}\sum_{i=1}^N[(\sum_{t=1}^T\nabla_{\theta}log \pi_{\theta}(a_{i,t}|s_{i,t}))(\sum_{t=1}^Nr(s_{i,t},a_{i,t}))]
|
||||
\end{aligned}$$
|
||||
|
||||
- 高冷的面试官:可以说一下你了解到的基于梯度策略的优化时的小技巧吗?
|
||||
|
||||
|
||||
Reference in New Issue
Block a user