update DQN
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 16:30:09
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-10-07 20:57:22
|
||||
LastEditTime: 2020-10-15 22:01:50
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -14,19 +14,45 @@ import seaborn as sns
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def plot(item,ylabel='rewards'):
|
||||
def plot(item,ylabel='rewards_train', save_fig = True):
|
||||
'''plot using searborn to plot
|
||||
'''
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.plot(np.arange(len(item)), item)
|
||||
plt.title(ylabel+' of DQN')
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('episodes')
|
||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
if save_fig:
|
||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
plt.show()
|
||||
|
||||
# def plot(item,ylabel='rewards'):
|
||||
#
|
||||
# df = pd.DataFrame(dict(time=np.arange(len(item)),value=item))
|
||||
# g = sns.relplot(x="time", y="value", kind="line", data=df)
|
||||
# # g.fig.autofmt_xdate()
|
||||
# # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning")
|
||||
# # # sns.tsplot(time=time, data=x2, color="b", condition="dagger")
|
||||
# # plt.ylabel("Reward")
|
||||
# # plt.xlabel("Iteration Number")
|
||||
# # plt.title("Imitation Learning")
|
||||
|
||||
# plt.show()
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
rewards=np.load(output_path+"rewards.npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",)
|
||||
output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/"
|
||||
tag = 'train'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards')
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot(steps,ylabel='steps_'+tag)
|
||||
tag = 'eval'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot(rewards,ylabel='rewards_'+tag)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot(steps,ylabel='steps_'+tag)
|
||||
|
||||
Reference in New Issue
Block a user