update rainbowdqn
This commit is contained in:
@@ -50,15 +50,15 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class FCN(nn.Module):
|
||||
def __init__(self, state_dim=4, action_dim=18):
|
||||
def __init__(self, n_states=4, n_actions=18):
|
||||
""" 初始化q网络,为全连接网络
|
||||
state_dim: 输入的feature即环境的state数目
|
||||
action_dim: 输出的action总个数
|
||||
n_states: 输入的feature即环境的state数目
|
||||
n_actions: 输出的action总个数
|
||||
"""
|
||||
super(FCN, self).__init__()
|
||||
self.fc1 = nn.Linear(state_dim, 128) # 输入层
|
||||
self.fc1 = nn.Linear(n_states, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, action_dim) # 输出层
|
||||
self.fc3 = nn.Linear(128, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -66,7 +66,7 @@ class FCN(nn.Module):
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
```
|
||||
输入为state_dim,输出为action_dim,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
输入为n_states,输出为n_actions,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
|
||||
### Replay Buffer
|
||||
|
||||
@@ -107,8 +107,8 @@ class ReplayBuffer:
|
||||
在类中建立两个网络,以及optimizer和memory,
|
||||
|
||||
```python
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
@@ -124,7 +124,7 @@ def choose_action(self, state):
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = random.randrange(self.action_dim)
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user