update
3
codes/ddpg/.vscode/settings.json
vendored
@@ -1,3 +0,0 @@
|
||||
{
|
||||
"python.pythonPath": "/Users/jj/anaconda3/envs/py37/bin/python"
|
||||
}
|
||||
@@ -1,26 +1,5 @@
|
||||
# DDPG
|
||||
|
||||
python 3.7.9
|
||||
## 伪代码
|
||||
|
||||
pytorch 1.6.0
|
||||
|
||||
tensorboard 2.3.0
|
||||
|
||||
torchvision 0.7.0
|
||||
|
||||
train:
|
||||
|
||||
```python
|
||||
python main.py
|
||||
```
|
||||
|
||||
eval:
|
||||
|
||||
```python
|
||||
python main.py --train 0
|
||||
```
|
||||
|
||||
open tensorboard:
|
||||
|
||||
```python
|
||||
tensorboard --logdir logs
|
||||
```
|
||||

|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-09 20:25:52
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-09-02 01:19:13
|
||||
LastEditTime: 2021-03-17 20:43:25
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -14,18 +14,17 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
from model import Actor, Critic
|
||||
from memory import ReplayBuffer
|
||||
from common.model import Actor, Critic
|
||||
from common.memory import ReplayBuffer
|
||||
|
||||
|
||||
class DDPG:
|
||||
def __init__(self, n_states, n_actions, hidden_dim=30, device="cpu", critic_lr=1e-3,
|
||||
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128):
|
||||
self.device = device
|
||||
self.critic = Critic(n_states, n_actions, hidden_dim).to(device)
|
||||
self.actor = Actor(n_states, n_actions, hidden_dim).to(device)
|
||||
self.target_critic = Critic(n_states, n_actions, hidden_dim).to(device)
|
||||
self.target_actor = Actor(n_states, n_actions, hidden_dim).to(device)
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
self.device = cfg.device
|
||||
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
@@ -33,14 +32,14 @@ class DDPG:
|
||||
target_param.data.copy_(param.data)
|
||||
|
||||
self.critic_optimizer = optim.Adam(
|
||||
self.critic.parameters(), lr=critic_lr)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr)
|
||||
self.memory = ReplayBuffer(memory_capacity)
|
||||
self.batch_size = batch_size
|
||||
self.soft_tau = soft_tau
|
||||
self.gamma = gamma
|
||||
self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.soft_tau = cfg.soft_tau
|
||||
self.gamma = cfg.gamma
|
||||
|
||||
def select_action(self, state):
|
||||
def choose_action(self, state):
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action = self.actor(state)
|
||||
# torch.detach()用于切断反向传播
|
||||
@@ -87,8 +86,8 @@ class DDPG:
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
)
|
||||
def save_model(self,path):
|
||||
torch.save(self.target_actor.state_dict(), path)
|
||||
def save(self,path):
|
||||
torch.save(self.target_net.state_dict(), path+'DDPG_checkpoint.pth')
|
||||
|
||||
def load_model(self,path):
|
||||
self.actor.load_state_dict(torch.load(path))
|
||||
def load(self,path):
|
||||
self.actor.load_state_dict(torch.load(path+'DDPG_checkpoint.pth'))
|
||||
BIN
codes/ddpg/assets/image-20210320151900695.png
Normal file
|
After Width: | Height: | Size: 259 KiB |
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:28:30
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-09-01 10:57:36
|
||||
LastEditTime: 2021-03-19 19:56:46
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -29,4 +29,33 @@ class NormalizedActions(gym.ActionWrapper):
|
||||
upper_bound = self.action_space.high
|
||||
action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
return action
|
||||
return action
|
||||
|
||||
class OUNoise(object):
|
||||
'''Ornstein–Uhlenbeck
|
||||
'''
|
||||
def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000):
|
||||
self.mu = mu
|
||||
self.theta = theta
|
||||
self.sigma = max_sigma
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
|
||||
def get_action(self, action, t=0):
|
||||
ou_obs = self.evolve_obs()
|
||||
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period)
|
||||
return np.clip(action + ou_obs, self.low, self.high)
|
||||
@@ -5,74 +5,60 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-10-15 21:23:39
|
||||
LastEditTime: 2021-03-19 19:57:00
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
from token import NUMBER
|
||||
from typing import Sequence
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||||
import torch
|
||||
import gym
|
||||
from agent import DDPG
|
||||
from env import NormalizedActions
|
||||
from noise import OUNoise
|
||||
import os
|
||||
import numpy as np
|
||||
import argparse
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import datetime
|
||||
from DDPG.agent import DDPG
|
||||
from DDPG.env import NormalizedActions,OUNoise
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
def get_args():
|
||||
'''模型建立好之后只需要在这里调参
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # q-learning中的gamma
|
||||
parser.add_argument("--critic_lr", default=1e-3, type=float) # critic学习率
|
||||
parser.add_argument("--actor_lr", default=1e-4, type=float)
|
||||
parser.add_argument("--memory_capacity", default=10000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
parser.add_argument("--batch_size", default=128, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=200, type=int)
|
||||
parser.add_argument("--train_steps", default=200, type=int)
|
||||
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200,
|
||||
type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--target_update", default=4, type=int,
|
||||
help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
return config
|
||||
|
||||
|
||||
def train(cfg):
|
||||
print('Start to train ! \n')
|
||||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
|
||||
# 增加action噪声
|
||||
ou_noise = OUNoise(env.action_space)
|
||||
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
agent = DDPG(n_states, n_actions, device="cpu", critic_lr=1e-3,
|
||||
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
|
||||
class DDPGConfig:
|
||||
def __init__(self):
|
||||
self.gamma = 0.99
|
||||
self.critic_lr = 1e-3
|
||||
self.actor_lr = 1e-4
|
||||
self.memory_capacity = 10000
|
||||
self.batch_size = 128
|
||||
self.train_eps =300
|
||||
self.train_steps = 200
|
||||
self.eval_eps = 200
|
||||
self.eval_steps = 200
|
||||
self.target_update = 4
|
||||
self.hidden_dim = 30
|
||||
self.soft_tau=1e-2
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
def train(cfg,env,agent):
|
||||
print('Start to train ! ')
|
||||
ou_noise = OUNoise(env.action_space) # action noise
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
ma_rewards = [] # moving average rewards
|
||||
ep_steps = []
|
||||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||||
writer = SummaryWriter(log_dir)
|
||||
for i_episode in range(1, cfg.train_eps+1):
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ou_noise.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(1, cfg.train_steps+1):
|
||||
action = agent.select_action(state)
|
||||
for i_step in range(cfg.train_steps):
|
||||
action = agent.choose_action(state)
|
||||
action = ou_noise.get_action(
|
||||
action, i_step) # 即paper中的random process
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
@@ -82,80 +68,25 @@ def train(cfg):
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
print('Episode:', i_episode, ' Reward: %i' %
|
||||
int(ep_reward), 'n_steps:', i_step)
|
||||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(ep_reward)
|
||||
if i_episode == 1:
|
||||
moving_average_rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
writer.add_scalar('steps_of_each_episode',
|
||||
ep_steps[-1], i_episode)
|
||||
writer.close()
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete training!')
|
||||
''' 保存模型 '''
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth')
|
||||
'''存储reward等相关结果'''
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
np.save(RESULT_PATH+'rewards_train.npy', rewards)
|
||||
np.save(RESULT_PATH+'moving_average_rewards_train.npy', moving_average_rewards)
|
||||
np.save(RESULT_PATH+'steps_train.npy', ep_steps)
|
||||
|
||||
def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||||
print('start to eval ! \n')
|
||||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
agent = DDPG(n_states, n_actions, critic_lr=1e-3,
|
||||
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
|
||||
agent.load_model(saved_model_path+'checkpoint.pth')
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
ep_steps = []
|
||||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||||
writer = SummaryWriter(log_dir)
|
||||
for i_episode in range(1, cfg.eval_eps+1):
|
||||
state = env.reset() # reset环境状态
|
||||
ep_reward = 0
|
||||
for i_step in range(1, cfg.eval_steps+1):
|
||||
action = agent.select_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
ep_reward += reward
|
||||
state = next_state # 跳转到下一个状态
|
||||
if done:
|
||||
break
|
||||
print('Episode:', i_episode, ' Reward: %i' %
|
||||
int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if i_episode == 1:
|
||||
moving_average_rewards.append(ep_reward)
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
writer.add_scalar('steps_of_each_episode',
|
||||
ep_steps[-1], i_episode)
|
||||
writer.close()
|
||||
'''存储reward等相关结果'''
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
np.save(RESULT_PATH+'rewards_eval.npy', rewards)
|
||||
np.save(RESULT_PATH+'moving_average_rewards_eval.npy', moving_average_rewards)
|
||||
np.save(RESULT_PATH+'steps_eval.npy', ep_steps)
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
if cfg.train:
|
||||
train(cfg)
|
||||
eval(cfg)
|
||||
else:
|
||||
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||||
eval(cfg,saved_model_path=model_path)
|
||||
cfg = DDPGConfig()
|
||||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
agent = DDPG(n_states,n_actions,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:27:16
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-13 00:29:45
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = map(np.stack, zip(*batch))
|
||||
return state_batch, action_batch, reward_batch, next_state_batch, done_batch
|
||||
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
@@ -1,50 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:03:59
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-08-22 19:09:54
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, 1)
|
||||
# 随机初始化为较小的值
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, state, action):
|
||||
# 按维数1拼接
|
||||
x = torch.cat([state, action], 1)
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_obs, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = F.tanh(self.linear3(x))
|
||||
return x
|
||||
|
||||
@@ -1,39 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:59
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-11 20:59:20
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import numpy as np
|
||||
|
||||
class OUNoise(object):
|
||||
def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000):
|
||||
self.mu = mu
|
||||
self.theta = theta
|
||||
self.sigma = max_sigma
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
|
||||
def get_action(self, action, t=0):
|
||||
ou_obs = self.evolve_obs()
|
||||
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period)
|
||||
return np.clip(action + ou_obs, self.low, self.high)
|
||||
@@ -1,46 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 16:30:09
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-10-15 21:32:05
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def plot_results(item,ylabel='rewards_train', save_fig = True):
|
||||
'''plot using searborn to plot
|
||||
'''
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.plot(np.arange(len(item)), item)
|
||||
plt.title(ylabel+' of DDPG')
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('episodes')
|
||||
if save_fig:
|
||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/"
|
||||
tag = 'train'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot_results(rewards)
|
||||
plot_results(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot_results(steps,ylabel='steps_'+tag)
|
||||
tag = 'eval'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot_results(rewards,ylabel='rewards_'+tag)
|
||||
plot_results(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot_results(steps,ylabel='steps_'+tag)
|
||||
|
Before Width: | Height: | Size: 50 KiB |
|
Before Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 56 KiB |
|
Before Width: | Height: | Size: 23 KiB |
|
Before Width: | Height: | Size: 23 KiB |
@@ -1,21 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-15 21:31:19
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-10-15 21:31:25
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
|
||||
def save_results(rewards,moving_average_rewards,ep_steps,path=RESULT_PATH):
|
||||
if not os.path.exists(path): # 检测是否存在文件夹
|
||||
os.mkdir(path)
|
||||
np.save(RESULT_PATH+'rewards_train.npy', rewards)
|
||||
np.save(RESULT_PATH+'moving_average_rewards_train.npy', moving_average_rewards)
|
||||
np.save(RESULT_PATH+'steps_train.npy',ep_steps )
|
||||