update
This commit is contained in:
3
codes/A2C/.vscode/settings.json
vendored
3
codes/A2C/.vscode/settings.json
vendored
@@ -1,3 +0,0 @@
|
||||
{
|
||||
"python.pythonPath": "/Users/jj/anaconda3/envs/py37/bin/python"
|
||||
}
|
||||
@@ -5,19 +5,18 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-03 20:47:09
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-08 22:16:29
|
||||
LastEditTime: 2021-03-20 17:41:21
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
from model import ActorCritic
|
||||
from A2C.model import ActorCritic
|
||||
import torch.optim as optim
|
||||
|
||||
class A2C:
|
||||
def __init__(self,n_states, n_actions, hidden_dim=256,device="cpu",lr = 3e-4):
|
||||
self.device = device
|
||||
def __init__(self,n_states, n_actions, cfg):
|
||||
self.gamma = 0.99
|
||||
self.model = ActorCritic(n_states, n_actions, hidden_dim=hidden_dim).to(device)
|
||||
self.optimizer = optim.Adam(self.model.parameters(),lr=lr)
|
||||
self.model = ActorCritic(n_states, n_actions, hidden_dim=cfg.hidden_dim).to(cfg.device)
|
||||
self.optimizer = optim.Adam(self.model.parameters(),lr=cfg.lr)
|
||||
def choose_action(self, state):
|
||||
dist, value = self.model(state)
|
||||
action = dist.sample()
|
||||
|
||||
@@ -5,13 +5,13 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-30 15:39:37
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-03 20:52:07
|
||||
LastEditTime: 2021-03-17 20:19:14
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
|
||||
import gym
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
from A2C.multiprocessing_env import SubprocVecEnv
|
||||
|
||||
# num_envs = 16
|
||||
# env_name = "Pendulum-v0"
|
||||
|
||||
@@ -5,94 +5,73 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-11-08 22:19:56
|
||||
LastEditTime: 2021-03-20 16:58:04
|
||||
@Discription:
|
||||
@Environment: python 3.7.9
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # add current terminal path
|
||||
import torch
|
||||
import gym
|
||||
import os
|
||||
import numpy as np
|
||||
import argparse
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from agent import A2C
|
||||
from env import make_envs
|
||||
from utils import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
|
||||
from utils import save_model,save_results
|
||||
|
||||
def get_args():
|
||||
'''模型建立好之后只需要在这里调参
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # reward 折扣因子
|
||||
parser.add_argument("--lr", default=3e-4, type=float) # critic学习率
|
||||
parser.add_argument("--actor_lr", default=1e-4, type=float)
|
||||
parser.add_argument("--memory_capacity", default=10000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
parser.add_argument("--batch_size", default=128, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=4000, type=int)
|
||||
parser.add_argument("--train_steps", default=5, type=int)
|
||||
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200,
|
||||
type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--target_update", default=4, type=int,
|
||||
help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
return config
|
||||
|
||||
def test_env(agent,device='cpu'):
|
||||
env = gym.make("CartPole-v0")
|
||||
state = env.reset()
|
||||
ep_reward=0
|
||||
for _ in range(200):
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
dist, value = agent.model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = env.step(action.cpu().numpy()[0])
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
return ep_reward
|
||||
import datetime
|
||||
from A2C.agent import A2C
|
||||
|
||||
|
||||
def train(cfg):
|
||||
print('Start to train ! \n')
|
||||
envs = make_envs(num_envs=16,env_name="CartPole-v0")
|
||||
n_states = envs.observation_space.shape[0]
|
||||
n_actions = envs.action_space.n
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
agent = A2C(n_states, n_actions, hidden_dim=256)
|
||||
# moving_average_rewards = []
|
||||
# ep_steps = []
|
||||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||||
writer = SummaryWriter(log_dir)
|
||||
state = envs.reset()
|
||||
for i_episode in range(1, cfg.train_eps+1):
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH):
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH):
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class A2CConfig:
|
||||
def __init__(self):
|
||||
self.gamma = 0.99
|
||||
self.lr = 3e-4 # learnning rate
|
||||
self.actor_lr = 1e-4 # learnning rate of actor network
|
||||
self.memory_capacity = 10000 # capacity of replay memory
|
||||
self.batch_size = 128
|
||||
self.train_eps = 200
|
||||
self.train_steps = 200
|
||||
self.eval_eps = 200
|
||||
self.eval_steps = 200
|
||||
self.target_update = 4
|
||||
self.hidden_dim=256
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start to train ! ')
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
for i_step in range(1, cfg.train_steps+1):
|
||||
state = torch.FloatTensor(state).to(device)
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg.train_steps):
|
||||
state = torch.FloatTensor(state).to(cfg.device)
|
||||
dist, value = agent.model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
next_state, reward, done, _ = env.step(action.cpu().numpy())
|
||||
ep_reward+=reward
|
||||
state = next_state
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
|
||||
if i_episode%20 == 0:
|
||||
print("reward",test_env(agent,device='cpu'))
|
||||
next_state = torch.FloatTensor(next_state).to(device)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(cfg.device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(cfg.device))
|
||||
if done:
|
||||
break
|
||||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
|
||||
next_state = torch.FloatTensor(next_state).to(cfg.device)
|
||||
_, next_value =agent.model(next_state)
|
||||
returns = agent.compute_returns(next_value, rewards, masks)
|
||||
|
||||
@@ -107,80 +86,17 @@ def train(cfg):
|
||||
agent.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
agent.optimizer.step()
|
||||
for _ in range(100):
|
||||
print("test_reward",test_env(agent,device='cpu'))
|
||||
|
||||
# print('Episode:', i_episode, ' Reward: %i' %
|
||||
# int(ep_reward[0]), 'n_steps:', i_step)
|
||||
# ep_steps.append(i_step)
|
||||
# rewards.append(ep_reward)
|
||||
# if i_episode == 1:
|
||||
# moving_average_rewards.append(ep_reward[0])
|
||||
# else:
|
||||
# moving_average_rewards.append(
|
||||
# 0.9*moving_average_rewards[-1]+0.1*ep_reward[0])
|
||||
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
# writer.add_scalar('steps_of_each_episode',
|
||||
# ep_steps[-1], i_episode)
|
||||
writer.close()
|
||||
|
||||
print('Complete training!')
|
||||
''' 保存模型 '''
|
||||
# save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
# '''存储reward等相关结果'''
|
||||
# save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||||
|
||||
# def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||||
# print('start to eval ! \n')
|
||||
# env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
# n_states = env.observation_space.shape[0]
|
||||
# n_actions = env.action_space.shape[0]
|
||||
# agent = DDPG(n_states, n_actions, critic_lr=1e-3,
|
||||
# actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
|
||||
# agent.load_model(saved_model_path+'checkpoint.pth')
|
||||
# rewards = []
|
||||
# moving_average_rewards = []
|
||||
# ep_steps = []
|
||||
# log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||||
# writer = SummaryWriter(log_dir)
|
||||
# for i_episode in range(1, cfg.eval_eps+1):
|
||||
# state = env.reset() # reset环境状态
|
||||
# ep_reward = 0
|
||||
# for i_step in range(1, cfg.eval_steps+1):
|
||||
# action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
# next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
# ep_reward += reward
|
||||
# state = next_state # 跳转到下一个状态
|
||||
# if done:
|
||||
# break
|
||||
# print('Episode:', i_episode, ' Reward: %i' %
|
||||
# int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||||
# ep_steps.append(i_step)
|
||||
# rewards.append(ep_reward)
|
||||
# # 计算滑动窗口的reward
|
||||
# if i_episode == 1:
|
||||
# moving_average_rewards.append(ep_reward)
|
||||
# else:
|
||||
# moving_average_rewards.append(
|
||||
# 0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
# writer.add_scalar('steps_of_each_episode',
|
||||
# ep_steps[-1], i_episode)
|
||||
# writer.close()
|
||||
# '''存储reward等相关结果'''
|
||||
# if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
# os.mkdir(RESULT_PATH)
|
||||
# np.save(RESULT_PATH+'rewards_eval.npy', rewards)
|
||||
# np.save(RESULT_PATH+'moving_average_rewards_eval.npy', moving_average_rewards)
|
||||
# np.save(RESULT_PATH+'steps_eval.npy', ep_steps)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
train(cfg)
|
||||
|
||||
# cfg = get_args()
|
||||
# if cfg.train:
|
||||
# train(cfg)
|
||||
# eval(cfg)
|
||||
# else:
|
||||
# model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||||
# eval(cfg,saved_model_path=model_path)
|
||||
cfg = A2CConfig()
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(1) # set random seed for env
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = A2C(n_states, n_actions, cfg)
|
||||
train(cfg,env,agent)
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-03 20:45:25
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-07 18:49:09
|
||||
LastEditTime: 2021-03-20 17:41:33
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -13,7 +13,7 @@ import torch.nn as nn
|
||||
from torch.distributions import Categorical
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim=256, std=0.0):
|
||||
def __init__(self, n_states, n_actions, hidden_dim=256):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
@@ -30,6 +30,7 @@ class ActorCritic(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
print(x)
|
||||
probs = self.actor(x)
|
||||
dist = Categorical(probs)
|
||||
return dist, value
|
||||
162
codes/A2C/test.py
Normal file
162
codes/A2C/test.py
Normal file
@@ -0,0 +1,162 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-20 17:43:17
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-20 19:36:24
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
|
||||
learning_rate = 3e-4
|
||||
|
||||
# Constants
|
||||
GAMMA = 0.99
|
||||
|
||||
class A2CConfig:
|
||||
''' hyperparameters
|
||||
'''
|
||||
def __init__(self):
|
||||
self.gamma = 0.99
|
||||
self.lr = 3e-4 # learnning rate
|
||||
self.actor_lr = 1e-4 # learnning rate of actor network
|
||||
self.memory_capacity = 10000 # capacity of replay memory
|
||||
self.batch_size = 128
|
||||
self.train_eps = 3000
|
||||
self.train_steps = 200
|
||||
self.eval_eps = 200
|
||||
self.eval_steps = 200
|
||||
self.target_update = 4
|
||||
self.hidden_dim=256
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, learning_rate=3e-4):
|
||||
super(ActorCritic, self).__init__()
|
||||
|
||||
self.n_actions = n_actions
|
||||
self.critic_linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.critic_linear2 = nn.Linear(hidden_dim, 1)
|
||||
|
||||
self.actor_linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.actor_linear2 = nn.Linear(hidden_dim, n_actions)
|
||||
|
||||
def forward(self, state):
|
||||
state = Variable(torch.from_numpy(state).float().unsqueeze(0))
|
||||
value = F.relu(self.critic_linear1(state))
|
||||
value = self.critic_linear2(value)
|
||||
policy_dist = F.relu(self.actor_linear1(state))
|
||||
policy_dist = F.softmax(self.actor_linear2(policy_dist), dim=1)
|
||||
|
||||
return value, policy_dist
|
||||
|
||||
class A2C:
|
||||
def __init__(self,n_states,n_actions,cfg):
|
||||
self.model = ActorCritic(n_states, n_actions, cfg.hidden_dim)
|
||||
self.optimizer = optim.Adam(self.model.parameters(), lr=cfg.lr)
|
||||
def choose_action(self,state):
|
||||
pass
|
||||
def update(self):
|
||||
pass
|
||||
|
||||
def train(cfg,env,agent):
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
actor_critic = ActorCritic(n_states, n_actions, hidden_dim)
|
||||
ac_optimizer = optim.Adam(actor_critic.parameters(), lr=learning_rate)
|
||||
|
||||
all_lengths = []
|
||||
average_lengths = []
|
||||
all_rewards = []
|
||||
entropy_term = 0
|
||||
|
||||
for episode in range(cfg.train_eps):
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
state = env.reset()
|
||||
for steps in range(cfg.train_steps):
|
||||
value, policy_dist = actor_critic.forward(state)
|
||||
value = value.detach().numpy()[0,0]
|
||||
dist = policy_dist.detach().numpy()
|
||||
|
||||
action = np.random.choice(n_actions, p=np.squeeze(dist))
|
||||
log_prob = torch.log(policy_dist.squeeze(0)[action])
|
||||
entropy = -np.sum(np.mean(dist) * np.log(dist))
|
||||
new_state, reward, done, _ = env.step(action)
|
||||
|
||||
rewards.append(reward)
|
||||
values.append(value)
|
||||
log_probs.append(log_prob)
|
||||
entropy_term += entropy
|
||||
state = new_state
|
||||
|
||||
if done or steps == cfg.train_steps-1:
|
||||
Qval, _ = actor_critic.forward(new_state)
|
||||
Qval = Qval.detach().numpy()[0,0]
|
||||
all_rewards.append(np.sum(rewards))
|
||||
all_lengths.append(steps)
|
||||
average_lengths.append(np.mean(all_lengths[-10:]))
|
||||
if episode % 10 == 0:
|
||||
sys.stdout.write("episode: {}, reward: {}, total length: {}, average length: {} \n".format(episode, np.sum(rewards), steps, average_lengths[-1]))
|
||||
break
|
||||
|
||||
# compute Q values
|
||||
Qvals = np.zeros_like(values)
|
||||
for t in reversed(range(len(rewards))):
|
||||
Qval = rewards[t] + GAMMA * Qval
|
||||
Qvals[t] = Qval
|
||||
|
||||
#update actor critic
|
||||
values = torch.FloatTensor(values)
|
||||
Qvals = torch.FloatTensor(Qvals)
|
||||
log_probs = torch.stack(log_probs)
|
||||
|
||||
advantage = Qvals - values
|
||||
actor_loss = (-log_probs * advantage).mean()
|
||||
critic_loss = 0.5 * advantage.pow(2).mean()
|
||||
ac_loss = actor_loss + critic_loss + 0.001 * entropy_term
|
||||
|
||||
ac_optimizer.zero_grad()
|
||||
ac_loss.backward()
|
||||
ac_optimizer.step()
|
||||
|
||||
|
||||
|
||||
# Plot results
|
||||
smoothed_rewards = pd.Series.rolling(pd.Series(all_rewards), 10).mean()
|
||||
smoothed_rewards = [elem for elem in smoothed_rewards]
|
||||
plt.plot(all_rewards)
|
||||
plt.plot(smoothed_rewards)
|
||||
plt.plot()
|
||||
plt.xlabel('Episode')
|
||||
plt.ylabel('Reward')
|
||||
plt.show()
|
||||
|
||||
plt.plot(all_lengths)
|
||||
plt.plot(average_lengths)
|
||||
plt.xlabel('Episode')
|
||||
plt.ylabel('Episode length')
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = A2CConfig
|
||||
env = gym.make("CartPole-v0")
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = A2C(n_states,n_actions,cfg)
|
||||
train(cfg,env,agent)
|
||||
@@ -15,7 +15,7 @@ import datetime
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/'
|
||||
|
||||
|
||||
def save_results(rewards,moving_average_rewards,ep_steps,path=RESULT_PATH):
|
||||
|
||||
Reference in New Issue
Block a user