diff --git a/codes/PolicyGradient/README.md b/codes/PolicyGradient/README.md new file mode 100644 index 0000000..43891bd --- /dev/null +++ b/codes/PolicyGradient/README.md @@ -0,0 +1,42 @@ +# Policy Gradient +实现的是Policy Gradient最基本的REINFORCE方法 +## 原理讲解 + +参考我的博客[Policy Gradient算法实战](https://blog.csdn.net/JohnJim0/article/details/110236851) + +## 环境 + +python 3.7.9 + +pytorch 1.6.0 + +tensorboard 2.3.0 + +torchvision 0.7.0 + +## 程序运行方法 + +train: + +```python +python main.py +``` + +eval: + +```python +python main.py --train 0 +``` +tensorboard: +```python +tensorboard --logdir logs +``` + + +## 参考 + +[REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703) + +[Policy Gradient paper](https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf) + +[REINFORCE](https://towardsdatascience.com/policy-gradient-methods-104c783251e0) \ No newline at end of file diff --git a/codes/PolicyGradient/agent.py b/codes/PolicyGradient/agent.py index e2725c3..6adf217 100644 --- a/codes/PolicyGradient/agent.py +++ b/codes/PolicyGradient/agent.py @@ -5,7 +5,7 @@ Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:27:44 LastEditor: John -LastEditTime: 2020-11-23 12:05:03 +LastEditTime: 2020-11-23 17:04:37 Discription: Environment: ''' @@ -18,9 +18,9 @@ from model import FCN class PolicyGradient: - def __init__(self, n_states,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5): + def __init__(self, state_dim,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5): self.gamma = gamma - self.policy_net = FCN(n_states) + self.policy_net = FCN(state_dim) self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr) self.batch_size = batch_size @@ -65,4 +65,8 @@ class PolicyGradient: loss = -m.log_prob(action) * reward # Negtive score function x reward # print(loss) loss.backward() - self.optimizer.step() \ No newline at end of file + self.optimizer.step() + def save_model(self,path): + torch.save(self.policy_net.state_dict(), path) + def load_model(self,path): + self.policy_net.load_state_dict(torch.load(path)) \ No newline at end of file diff --git a/codes/PolicyGradient/env.py b/codes/PolicyGradient/env.py index bf67b81..0bf59eb 100644 --- a/codes/PolicyGradient/env.py +++ b/codes/PolicyGradient/env.py @@ -14,6 +14,6 @@ import gym def env_init(): env = gym.make('CartPole-v0') # 可google为什么unwrapped gym,此处一般不需要 env.seed(1) # 设置env随机种子 - n_states = env.observation_space.shape[0] + state_dim = env.observation_space.shape[0] n_actions = env.action_space.n - return env,n_states,n_actions \ No newline at end of file + return env,state_dim,n_actions \ No newline at end of file diff --git a/codes/PolicyGradient/logs/eval/20201123-170440/events.out.tfevents.1606122284.MacBook-Pro.local.78801.0 b/codes/PolicyGradient/logs/eval/20201123-170440/events.out.tfevents.1606122284.MacBook-Pro.local.78801.0 new file mode 100644 index 0000000..2569c0f Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201123-170440/events.out.tfevents.1606122284.MacBook-Pro.local.78801.0 differ diff --git a/codes/PolicyGradient/logs/eval/20201123-170440/rewards_moving_average/events.out.tfevents.1606122284.MacBook-Pro.local.78801.2 b/codes/PolicyGradient/logs/eval/20201123-170440/rewards_moving_average/events.out.tfevents.1606122284.MacBook-Pro.local.78801.2 new file mode 100644 index 0000000..909ca5f Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201123-170440/rewards_moving_average/events.out.tfevents.1606122284.MacBook-Pro.local.78801.2 differ diff --git a/codes/PolicyGradient/logs/eval/20201123-170440/rewards_raw/events.out.tfevents.1606122284.MacBook-Pro.local.78801.1 b/codes/PolicyGradient/logs/eval/20201123-170440/rewards_raw/events.out.tfevents.1606122284.MacBook-Pro.local.78801.1 new file mode 100644 index 0000000..70b7113 Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201123-170440/rewards_raw/events.out.tfevents.1606122284.MacBook-Pro.local.78801.1 differ diff --git a/codes/PolicyGradient/logs/eval/20201126-191039/events.out.tfevents.1606389059.MacBook-Pro.local.21663.3 b/codes/PolicyGradient/logs/eval/20201126-191039/events.out.tfevents.1606389059.MacBook-Pro.local.21663.3 new file mode 100644 index 0000000..fa9c4e6 Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201126-191039/events.out.tfevents.1606389059.MacBook-Pro.local.21663.3 differ diff --git a/codes/PolicyGradient/logs/eval/20201126-191039/rewards_moving_average/events.out.tfevents.1606389059.MacBook-Pro.local.21663.5 b/codes/PolicyGradient/logs/eval/20201126-191039/rewards_moving_average/events.out.tfevents.1606389059.MacBook-Pro.local.21663.5 new file mode 100644 index 0000000..f11d33e Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201126-191039/rewards_moving_average/events.out.tfevents.1606389059.MacBook-Pro.local.21663.5 differ diff --git a/codes/PolicyGradient/logs/eval/20201126-191039/rewards_raw/events.out.tfevents.1606389059.MacBook-Pro.local.21663.4 b/codes/PolicyGradient/logs/eval/20201126-191039/rewards_raw/events.out.tfevents.1606389059.MacBook-Pro.local.21663.4 new file mode 100644 index 0000000..1d052ea Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201126-191039/rewards_raw/events.out.tfevents.1606389059.MacBook-Pro.local.21663.4 differ diff --git a/codes/PolicyGradient/logs/eval/20201126-191145/events.out.tfevents.1606389139.MacBook-Pro.local.21831.3 b/codes/PolicyGradient/logs/eval/20201126-191145/events.out.tfevents.1606389139.MacBook-Pro.local.21831.3 new file mode 100644 index 0000000..646540e Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201126-191145/events.out.tfevents.1606389139.MacBook-Pro.local.21831.3 differ diff --git a/codes/PolicyGradient/logs/eval/20201126-191145/rewards_moving_average/events.out.tfevents.1606389139.MacBook-Pro.local.21831.5 b/codes/PolicyGradient/logs/eval/20201126-191145/rewards_moving_average/events.out.tfevents.1606389139.MacBook-Pro.local.21831.5 new file mode 100644 index 0000000..b58a943 Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201126-191145/rewards_moving_average/events.out.tfevents.1606389139.MacBook-Pro.local.21831.5 differ diff --git a/codes/PolicyGradient/logs/eval/20201126-191145/rewards_raw/events.out.tfevents.1606389139.MacBook-Pro.local.21831.4 b/codes/PolicyGradient/logs/eval/20201126-191145/rewards_raw/events.out.tfevents.1606389139.MacBook-Pro.local.21831.4 new file mode 100644 index 0000000..d7adc36 Binary files /dev/null and b/codes/PolicyGradient/logs/eval/20201126-191145/rewards_raw/events.out.tfevents.1606389139.MacBook-Pro.local.21831.4 differ diff --git a/codes/PolicyGradient/logs/train/20201123-135302/events.out.tfevents.1606110786.MacBook-Pro.local.75770.0 b/codes/PolicyGradient/logs/train/20201123-135302/events.out.tfevents.1606110786.MacBook-Pro.local.75770.0 new file mode 100644 index 0000000..a7ee08a Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201123-135302/events.out.tfevents.1606110786.MacBook-Pro.local.75770.0 differ diff --git a/codes/PolicyGradient/logs/train/20201123-135302/rewards_moving_average/events.out.tfevents.1606110786.MacBook-Pro.local.75770.2 b/codes/PolicyGradient/logs/train/20201123-135302/rewards_moving_average/events.out.tfevents.1606110786.MacBook-Pro.local.75770.2 new file mode 100644 index 0000000..0043ce2 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201123-135302/rewards_moving_average/events.out.tfevents.1606110786.MacBook-Pro.local.75770.2 differ diff --git a/codes/PolicyGradient/logs/train/20201123-135302/rewards_raw/events.out.tfevents.1606110786.MacBook-Pro.local.75770.1 b/codes/PolicyGradient/logs/train/20201123-135302/rewards_raw/events.out.tfevents.1606110786.MacBook-Pro.local.75770.1 new file mode 100644 index 0000000..41392e8 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201123-135302/rewards_raw/events.out.tfevents.1606110786.MacBook-Pro.local.75770.1 differ diff --git a/codes/PolicyGradient/logs/train/20201126-191039/events.out.tfevents.1606389044.MacBook-Pro.local.21663.0 b/codes/PolicyGradient/logs/train/20201126-191039/events.out.tfevents.1606389044.MacBook-Pro.local.21663.0 new file mode 100644 index 0000000..3ececd0 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201126-191039/events.out.tfevents.1606389044.MacBook-Pro.local.21663.0 differ diff --git a/codes/PolicyGradient/logs/train/20201126-191039/rewards_moving_average/events.out.tfevents.1606389044.MacBook-Pro.local.21663.2 b/codes/PolicyGradient/logs/train/20201126-191039/rewards_moving_average/events.out.tfevents.1606389044.MacBook-Pro.local.21663.2 new file mode 100644 index 0000000..5b10ae8 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201126-191039/rewards_moving_average/events.out.tfevents.1606389044.MacBook-Pro.local.21663.2 differ diff --git a/codes/PolicyGradient/logs/train/20201126-191039/rewards_raw/events.out.tfevents.1606389044.MacBook-Pro.local.21663.1 b/codes/PolicyGradient/logs/train/20201126-191039/rewards_raw/events.out.tfevents.1606389044.MacBook-Pro.local.21663.1 new file mode 100644 index 0000000..a0940a6 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201126-191039/rewards_raw/events.out.tfevents.1606389044.MacBook-Pro.local.21663.1 differ diff --git a/codes/PolicyGradient/logs/train/20201126-191145/events.out.tfevents.1606389110.MacBook-Pro.local.21831.0 b/codes/PolicyGradient/logs/train/20201126-191145/events.out.tfevents.1606389110.MacBook-Pro.local.21831.0 new file mode 100644 index 0000000..5ffc5f9 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201126-191145/events.out.tfevents.1606389110.MacBook-Pro.local.21831.0 differ diff --git a/codes/PolicyGradient/logs/train/20201126-191145/rewards_moving_average/events.out.tfevents.1606389110.MacBook-Pro.local.21831.2 b/codes/PolicyGradient/logs/train/20201126-191145/rewards_moving_average/events.out.tfevents.1606389110.MacBook-Pro.local.21831.2 new file mode 100644 index 0000000..933661b Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201126-191145/rewards_moving_average/events.out.tfevents.1606389110.MacBook-Pro.local.21831.2 differ diff --git a/codes/PolicyGradient/logs/train/20201126-191145/rewards_raw/events.out.tfevents.1606389110.MacBook-Pro.local.21831.1 b/codes/PolicyGradient/logs/train/20201126-191145/rewards_raw/events.out.tfevents.1606389110.MacBook-Pro.local.21831.1 new file mode 100644 index 0000000..0cfb773 Binary files /dev/null and b/codes/PolicyGradient/logs/train/20201126-191145/rewards_raw/events.out.tfevents.1606389110.MacBook-Pro.local.21831.1 differ diff --git a/codes/PolicyGradient/main.py b/codes/PolicyGradient/main.py index 0e19513..6d8bc93 100644 --- a/codes/PolicyGradient/main.py +++ b/codes/PolicyGradient/main.py @@ -5,28 +5,38 @@ Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John -LastEditTime: 2020-11-23 12:06:15 +LastEditTime: 2020-11-24 19:52:40 Discription: Environment: ''' from itertools import count import torch +import os +from torch.utils.tensorboard import SummaryWriter + from env import env_init from params import get_args from agent import PolicyGradient - +from params import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH +from utils import save_results,save_model +from plot import plot def train(cfg): - env,n_states,n_actions = env_init() + env,state_dim,n_actions = env_init() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu - agent = PolicyGradient(n_states,device = device,lr = cfg.policy_lr) + agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr) '''下面带pool都是存放的transition序列用于gradient''' state_pool = [] # 存放每batch_size个episode的state序列 action_pool = [] reward_pool = [] + ''' 存储每个episode的reward用于绘图''' + rewards = [] + moving_average_rewards = [] + log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE + writer = SummaryWriter(log_dir) # 使用tensorboard的writer for i_episode in range(cfg.train_eps): state = env.reset() ep_reward = 0 - for t in count(): + for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward @@ -39,14 +49,61 @@ def train(cfg): if done: print('Episode:', i_episode, ' Reward:', ep_reward) break - # if i_episode % cfg.batch_size == 0: - if i_episode > 0 and i_episode % 5 == 0: + if i_episode > 0 and i_episode % cfg.batch_size == 0: agent.update(reward_pool,state_pool,action_pool) state_pool = [] # 每个episode的state action_pool = [] reward_pool = [] + rewards.append(ep_reward) + if i_episode == 0: + moving_average_rewards.append(ep_reward) + else: + moving_average_rewards.append( + 0.9*moving_average_rewards[-1]+0.1*ep_reward) + writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1) + writer.close() + print('Complete training!') + save_model(agent,model_path=SAVED_MODEL_PATH) + '''存储reward等相关结果''' + save_results(rewards,moving_average_rewards,tag='train',result_path=RESULT_PATH) + plot(rewards) + plot(moving_average_rewards,ylabel='moving_average_rewards_train') - +def eval(cfg,saved_model_path = SAVED_MODEL_PATH): + env,state_dim,n_actions = env_init() + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu + agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr) + agent.load_model(saved_model_path+'checkpoint.pth') + rewards = [] + moving_average_rewards = [] + log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE + writer = SummaryWriter(log_dir) # 使用tensorboard的writer + for i_episode in range(cfg.eval_eps): + state = env.reset() + ep_reward = 0 + for _ in count(): + action = agent.choose_action(state) # 根据当前环境state选择action + next_state, reward, done, _ = env.step(action) + ep_reward += reward + state = next_state + if done: + print('Episode:', i_episode, ' Reward:', ep_reward) + break + rewards.append(ep_reward) + if i_episode == 0: + moving_average_rewards.append(ep_reward) + else: + moving_average_rewards.append( + 0.9*moving_average_rewards[-1]+0.1*ep_reward) + writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1) + writer.close() + print('Complete evaling!') + if __name__ == "__main__": cfg = get_args() - train(cfg) \ No newline at end of file + if cfg.train: + train(cfg) + eval(cfg) + else: + model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/" + eval(cfg,saved_model_path=model_path) diff --git a/codes/PolicyGradient/model.py b/codes/PolicyGradient/model.py index 9ca6738..ce8b4d2 100644 --- a/codes/PolicyGradient/model.py +++ b/codes/PolicyGradient/model.py @@ -5,7 +5,7 @@ Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:18:46 LastEditor: John -LastEditTime: 2020-11-23 01:58:22 +LastEditTime: 2020-11-27 16:55:25 Discription: Environment: ''' @@ -13,11 +13,11 @@ import torch.nn as nn import torch.nn.functional as F class FCN(nn.Module): ''' 全连接网络''' - def __init__(self,n_states): + def __init__(self,state_dim): super(FCN, self).__init__() - # 24和36为hidden layer的层数,可根据n_states, n_actions的情况来改变 - self.fc1 = nn.Linear(n_states, 24) - self.fc2 = nn.Linear(24, 36) + # 24和36为hidden layer的层数,可根据state_dim, n_actions的情况来改变 + self.fc1 = nn.Linear(state_dim, 36) + self.fc2 = nn.Linear(36, 36) self.fc3 = nn.Linear(36, 1) # Prob of Left def forward(self, x): diff --git a/codes/PolicyGradient/params.py b/codes/PolicyGradient/params.py index 2a3390f..3f34b20 100644 --- a/codes/PolicyGradient/params.py +++ b/codes/PolicyGradient/params.py @@ -5,15 +5,25 @@ Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:25:37 LastEditor: John -LastEditTime: 2020-11-22 23:32:44 +LastEditTime: 2020-11-26 19:11:21 Discription: 存储参数 Environment: ''' import argparse +import datetime +import os + +SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") +SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' +RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/' + def get_args(): '''训练参数''' parser = argparse.ArgumentParser() - parser.add_argument("--train_eps", default=1200, type=int) # 训练的最大episode数目 + parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval + parser.add_argument("--train_eps", default=300, type=int) # 训练的最大episode数目 + parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目 + parser.add_argument("--batch_size", default=4, type=int) # 用于gradient的episode数目 parser.add_argument("--policy_lr", default=0.01, type=float) # 学习率 config = parser.parse_args() return config \ No newline at end of file diff --git a/codes/PolicyGradient/plot.py b/codes/PolicyGradient/plot.py new file mode 100644 index 0000000..2a9a65e --- /dev/null +++ b/codes/PolicyGradient/plot.py @@ -0,0 +1,46 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +Author: John +Email: johnjim0816@gmail.com +Date: 2020-11-23 13:48:46 +LastEditor: John +LastEditTime: 2020-11-23 13:48:48 +Discription: +Environment: +''' +import matplotlib.pyplot as plt +import seaborn as sns +import numpy as np +import os + +def plot(item,ylabel='rewards_train', save_fig = True): + '''plot using searborn to plot + ''' + sns.set() + plt.figure() + plt.plot(np.arange(len(item)), item) + plt.title(ylabel+' of DQN') + plt.ylabel(ylabel) + plt.xlabel('episodes') + if save_fig: + plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") + plt.show() + +if __name__ == "__main__": + + output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/" + tag = 'train' + rewards=np.load(output_path+"rewards_"+tag+".npy", ) + moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",) + steps=np.load(output_path+"steps_"+tag+".npy") + plot(rewards) + plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag) + plot(steps,ylabel='steps_'+tag) + tag = 'eval' + rewards=np.load(output_path+"rewards_"+tag+".npy", ) + moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",) + steps=np.load(output_path+"steps_"+tag+".npy") + plot(rewards,ylabel='rewards_'+tag) + plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag) + plot(steps,ylabel='steps_'+tag) \ No newline at end of file diff --git a/codes/PolicyGradient/result/20201123-135302/moving_average_rewards_train.npy b/codes/PolicyGradient/result/20201123-135302/moving_average_rewards_train.npy new file mode 100644 index 0000000..430dd9e Binary files /dev/null and b/codes/PolicyGradient/result/20201123-135302/moving_average_rewards_train.npy differ diff --git a/codes/PolicyGradient/result/20201123-135302/rewards_train.npy b/codes/PolicyGradient/result/20201123-135302/rewards_train.npy new file mode 100644 index 0000000..1916910 Binary files /dev/null and b/codes/PolicyGradient/result/20201123-135302/rewards_train.npy differ diff --git a/codes/PolicyGradient/result/20201126-191039/moving_average_rewards_train.npy b/codes/PolicyGradient/result/20201126-191039/moving_average_rewards_train.npy new file mode 100644 index 0000000..661b070 Binary files /dev/null and b/codes/PolicyGradient/result/20201126-191039/moving_average_rewards_train.npy differ diff --git a/codes/PolicyGradient/result/20201126-191039/rewards_train.npy b/codes/PolicyGradient/result/20201126-191039/rewards_train.npy new file mode 100644 index 0000000..96f9738 Binary files /dev/null and b/codes/PolicyGradient/result/20201126-191039/rewards_train.npy differ diff --git a/codes/PolicyGradient/result/20201126-191145/moving_average_rewards_train.npy b/codes/PolicyGradient/result/20201126-191145/moving_average_rewards_train.npy new file mode 100644 index 0000000..784889c Binary files /dev/null and b/codes/PolicyGradient/result/20201126-191145/moving_average_rewards_train.npy differ diff --git a/codes/PolicyGradient/result/20201126-191145/rewards_train.npy b/codes/PolicyGradient/result/20201126-191145/rewards_train.npy new file mode 100644 index 0000000..999029d Binary files /dev/null and b/codes/PolicyGradient/result/20201126-191145/rewards_train.npy differ diff --git a/codes/PolicyGradient/result/moving_average_rewards_train.png b/codes/PolicyGradient/result/moving_average_rewards_train.png new file mode 100644 index 0000000..b531cda Binary files /dev/null and b/codes/PolicyGradient/result/moving_average_rewards_train.png differ diff --git a/codes/PolicyGradient/result/rewards_train.png b/codes/PolicyGradient/result/rewards_train.png new file mode 100644 index 0000000..007232d Binary files /dev/null and b/codes/PolicyGradient/result/rewards_train.png differ diff --git a/codes/PolicyGradient/saved_model/20201123-135302/checkpoint.pth b/codes/PolicyGradient/saved_model/20201123-135302/checkpoint.pth new file mode 100644 index 0000000..1f13387 Binary files /dev/null and b/codes/PolicyGradient/saved_model/20201123-135302/checkpoint.pth differ diff --git a/codes/PolicyGradient/saved_model/20201126-191039/checkpoint.pth b/codes/PolicyGradient/saved_model/20201126-191039/checkpoint.pth new file mode 100644 index 0000000..12bfcce Binary files /dev/null and b/codes/PolicyGradient/saved_model/20201126-191039/checkpoint.pth differ diff --git a/codes/PolicyGradient/saved_model/20201126-191145/checkpoint.pth b/codes/PolicyGradient/saved_model/20201126-191145/checkpoint.pth new file mode 100644 index 0000000..0f7ced9 Binary files /dev/null and b/codes/PolicyGradient/saved_model/20201126-191145/checkpoint.pth differ diff --git a/codes/PolicyGradient/saved_model/checkpoint.pth b/codes/PolicyGradient/saved_model/checkpoint.pth new file mode 100644 index 0000000..1f13387 Binary files /dev/null and b/codes/PolicyGradient/saved_model/checkpoint.pth differ diff --git a/codes/PolicyGradient/utils.py b/codes/PolicyGradient/utils.py new file mode 100644 index 0000000..887ca25 --- /dev/null +++ b/codes/PolicyGradient/utils.py @@ -0,0 +1,29 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +Author: John +Email: johnjim0816@gmail.com +Date: 2020-11-23 13:44:52 +LastEditor: John +LastEditTime: 2020-11-23 13:45:42 +Discription: +Environment: +''' +import os +import numpy as np + + +def save_results(rewards,moving_average_rewards,tag='train',result_path='./result'): + '''保存reward等结果 + ''' + if not os.path.exists(result_path): # 检测是否存在文件夹 + os.mkdir(result_path) + np.save(result_path+'rewards_'+tag+'.npy', rewards) + np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards) + print('results saved!') + +def save_model(agent,model_path='./saved_model'): + if not os.path.exists(model_path): # 检测是否存在文件夹 + os.mkdir(model_path) + agent.save_model(model_path+'checkpoint.pth') + print('model saved!') \ No newline at end of file diff --git a/codes/dqn/.vscode/settings.json b/codes/dqn/.vscode/settings.json deleted file mode 100644 index be0f1ab..0000000 --- a/codes/dqn/.vscode/settings.json +++ /dev/null @@ -1,3 +0,0 @@ -{ - "python.pythonPath": "/Users/jj/anaconda3/envs/py37/bin/python" -} \ No newline at end of file diff --git a/codes/dqn/README.md b/codes/dqn/README.md index e0419b9..a8e141b 100644 --- a/codes/dqn/README.md +++ b/codes/dqn/README.md @@ -1,3 +1,8 @@ +## 思路 + +见[我的博客](https://blog.csdn.net/JohnJim0/article/details/109557173) +## 环境 + python 3.7.9 pytorch 1.6.0 @@ -6,6 +11,7 @@ tensorboard 2.3.0 torchvision 0.7.0 +## 使用 train: @@ -18,7 +24,12 @@ eval: ```python python main.py --train 0 ``` - +可视化: ```python tensorboard --logdir logs -``` \ No newline at end of file +``` + +## Torch知识 + +[with torch.no_grad()](https://www.jianshu.com/p/1cea017f5d11) + diff --git a/codes/dqn/agent.py b/codes/dqn/agent.py index 9ff8b28..1ad82df 100644 --- a/codes/dqn/agent.py +++ b/codes/dqn/agent.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John -LastEditTime: 2020-10-15 21:56:21 +LastEditTime: 2020-11-22 11:12:30 @Discription: @Environment: python 3.7.7 ''' @@ -24,11 +24,12 @@ from memory import ReplayBuffer from model import FCN class DQN: def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01, batch_size=128, device="cpu"): - self.actions_count = 0 + self.n_actions = n_actions # 总的动作个数 self.device = device # 设备,cpu或gpu等 - self.gamma = gamma + self.gamma = gamma # 奖励的折扣因子 # e-greedy策略相关参数 + self.actions_count = 0 # 用于epsilon的衰减计数 self.epsilon = 0 self.epsilon_start = epsilon_start self.epsilon_end = epsilon_end @@ -67,12 +68,11 @@ class DQN: action = random.randrange(self.n_actions) return action else: - with torch.no_grad(): + with torch.no_grad(): # 取消保存梯度 # 先转为张量便于丢给神经网络,state元素数据原本为float64 # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 state = torch.tensor( - [state], device='cpu', dtype=torch.float32) - # 如tensor([[-0.0798, -0.0079]], grad_fn=) + [state], device='cpu', dtype=torch.float32) # 如tensor([[-0.0798, -0.0079]], grad_fn=) q_value = self.target_net(state) # tensor.max(1)返回每行的最大值以及对应的下标, # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) @@ -86,8 +86,8 @@ class DQN: # 从memory中随机采样transition state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) - # 转为张量 - # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) + '''转为张量 + 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])''' state_batch = torch.tensor( state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( @@ -99,9 +99,8 @@ class DQN: done_batch = torch.tensor(np.float32( done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 - # 计算当前(s_t,a)对应的Q(s_t, a) - # 关于torch.gather,对于a=torch.Tensor([[1,2],[3,4]]) - # 那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]]) + '''计算当前(s_t,a)对应的Q(s_t, a)''' + '''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])''' q_values = self.policy_net(state_batch).gather( dim=1, index=action_batch) # 等价于self.forward # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states @@ -119,6 +118,7 @@ class DQN: self.loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) + self.optimizer.step() # 更新模型 def save_model(self,path): diff --git a/codes/dqn/main.py b/codes/dqn/main.py index 9bdc94d..9c6d76a 100644 --- a/codes/dqn/main.py +++ b/codes/dqn/main.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John -LastEditTime: 2020-10-15 22:00:28 +LastEditTime: 2020-11-23 11:58:17 @Discription: @Environment: python 3.7.7 ''' @@ -16,7 +16,7 @@ import argparse from torch.utils.tensorboard import SummaryWriter import datetime import os -from utils import save_results +from utils import save_results,save_model SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' @@ -53,7 +53,7 @@ def get_args(): def train(cfg): print('Start to train ! \n') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu - env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 + env = gym.make('CartPole-v0') env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n @@ -95,10 +95,7 @@ def train(cfg): writer.close() print('Complete training!') ''' 保存模型 ''' - if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 - os.mkdir(SAVED_MODEL_PATH) - agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth') - print('model saved!') + save_model(agent,model_path=SAVED_MODEL_PATH) '''存储reward等相关结果''' save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH) @@ -110,7 +107,7 @@ def eval(cfg, saved_model_path = SAVED_MODEL_PATH): env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n - agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, + agent = DQN(n_states=n_states, n_actions=n_actions, device="cpu", gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) agent.load_model(saved_model_path+'checkpoint.pth') rewards = [] diff --git a/codes/dqn/plot.py b/codes/dqn/plot.py index 2bc3e04..59680c2 100644 --- a/codes/dqn/plot.py +++ b/codes/dqn/plot.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-11 16:30:09 @LastEditor: John -LastEditTime: 2020-10-15 22:01:50 +LastEditTime: 2020-11-23 13:48:31 @Discription: @Environment: python 3.7.7 ''' @@ -27,18 +27,6 @@ def plot(item,ylabel='rewards_train', save_fig = True): plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") plt.show() -# def plot(item,ylabel='rewards'): -# -# df = pd.DataFrame(dict(time=np.arange(len(item)),value=item)) -# g = sns.relplot(x="time", y="value", kind="line", data=df) -# # g.fig.autofmt_xdate() -# # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning") -# # # sns.tsplot(time=time, data=x2, color="b", condition="dagger") -# # plt.ylabel("Reward") -# # plt.xlabel("Iteration Number") -# # plt.title("Imitation Learning") - - # plt.show() if __name__ == "__main__": output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/" diff --git a/codes/dqn/utils.py b/codes/dqn/utils.py index 0c75408..9f8ca89 100644 --- a/codes/dqn/utils.py +++ b/codes/dqn/utils.py @@ -5,7 +5,7 @@ Author: John Email: johnjim0816@gmail.com Date: 2020-10-15 21:28:00 LastEditor: John -LastEditTime: 2020-10-15 21:50:30 +LastEditTime: 2020-10-30 16:56:55 Discription: Environment: ''' @@ -14,8 +14,17 @@ import numpy as np def save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path='./result'): + '''保存reward等结果 + ''' if not os.path.exists(result_path): # 检测是否存在文件夹 os.mkdir(result_path) np.save(result_path+'rewards_'+tag+'.npy', rewards) np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards) - np.save(result_path+'steps_'+tag+'.npy',ep_steps ) \ No newline at end of file + np.save(result_path+'steps_'+tag+'.npy',ep_steps ) + print('results saved!') + +def save_model(agent,model_path='./saved_model'): + if not os.path.exists(model_path): # 检测是否存在文件夹 + os.mkdir(model_path) + agent.save_model(model_path+'checkpoint.pth') + print('model saved!') \ No newline at end of file