update
This commit is contained in:
@@ -5,59 +5,51 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-06-09 19:05:20
|
||||
LastEditTime: 2022-07-13 22:53:11
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径sys.path
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import datetime
|
||||
import gym
|
||||
import torch
|
||||
import argparse
|
||||
|
||||
from env import NormalizedActions,OUNoise
|
||||
from ddpg import DDPG
|
||||
from common.utils import save_results,make_dir
|
||||
from common.utils import plot_rewards
|
||||
from common.utils import plot_rewards,save_args
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
class Config:
|
||||
'''超参数
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
################################## 环境超参数 ###################################
|
||||
self.algo_name = 'DDPG' # 算法名称
|
||||
self.env_name = 'Pendulum-v1' # 环境名称,gym新版本(约0.21.0之后)中Pendulum-v0改为Pendulum-v1
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
|
||||
self.seed = 10 # 随机种子,置0则不设置随机种子
|
||||
self.train_eps = 300 # 训练的回合数
|
||||
self.test_eps = 20 # 测试的回合数
|
||||
################################################################################
|
||||
|
||||
################################## 算法超参数 ###################################
|
||||
self.gamma = 0.99 # 折扣因子
|
||||
self.critic_lr = 1e-3 # 评论家网络的学习率
|
||||
self.actor_lr = 1e-4 # 演员网络的学习率
|
||||
self.memory_capacity = 8000 # 经验回放的容量
|
||||
self.batch_size = 128 # mini-batch SGD中的批量大小
|
||||
self.target_update = 2 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层维度
|
||||
self.soft_tau = 1e-2 # 软更新参数
|
||||
################################################################################
|
||||
|
||||
################################# 保存结果相关参数 ################################
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
################################################################################
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=2,type=int)
|
||||
parser.add_argument('--soft_tau',default=1e-2,type=float)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
args.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||||
@@ -67,9 +59,9 @@ def env_agent_config(cfg,seed=1):
|
||||
agent = DDPG(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
def train(cfg, env, agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}')
|
||||
ou_noise = OUNoise(env.action_space) # 动作噪声
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
ou_noise = OUNoise(env.action_space) # noise of action
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
@@ -88,18 +80,18 @@ def train(cfg, env, agent):
|
||||
agent.update()
|
||||
state = next_state
|
||||
if (i_ep+1)%10 == 0:
|
||||
print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('完成训练!')
|
||||
print('Finish training!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
print('Start testing')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
@@ -113,25 +105,25 @@ def test(cfg, env, agent):
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
|
||||
print('Finish testing!')
|
||||
return rewards, ma_rewards
|
||||
if __name__ == "__main__":
|
||||
cfg = Config()
|
||||
# 训练
|
||||
cfg = get_args()
|
||||
# training
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
# testing
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = test(cfg,env,agent)
|
||||
|
||||
Reference in New Issue
Block a user