更新PPO,增加PER DQN
This commit is contained in:
139
projects/codes/PER_DQN/per_dqn.py
Normal file
139
projects/codes/PER_DQN/per_dqn.py
Normal file
@@ -0,0 +1,139 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: DingLi
|
||||
Email: wangzhongren@sjtu.edu.cn
|
||||
Date: 2022-10-31 22:54:00
|
||||
LastEditor: DingLi
|
||||
LastEditTime: 2022-11-14 10:43:18
|
||||
Discription: CartPole-v1
|
||||
'''
|
||||
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-10-26 07:50:24
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
class PER_DQN:
|
||||
def __init__(self,model,memory,cfg):
|
||||
|
||||
self.n_actions = cfg.n_actions
|
||||
self.device = torch.device(cfg.device)
|
||||
self.gamma = cfg.gamma
|
||||
## e-greedy parameters
|
||||
self.sample_count = 0 # sample count for epsilon decay
|
||||
self.epsilon = cfg.epsilon_start
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = model.to(self.device)
|
||||
self.target_net = model.to(self.device)
|
||||
## copy parameters from policy net to target net
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.memory = memory
|
||||
self.update_flag = False
|
||||
|
||||
def sample_action(self, state):
|
||||
''' sample action with e-greedy policy
|
||||
'''
|
||||
self.sample_count += 1
|
||||
# epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
# @torch.no_grad()
|
||||
# def sample_action(self, state):
|
||||
# ''' sample action with e-greedy policy
|
||||
# '''
|
||||
# self.sample_count += 1
|
||||
# # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
||||
# self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
# math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
# if random.random() > self.epsilon:
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# q_values = self.policy_net(state)
|
||||
# action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
# else:
|
||||
# action = random.randrange(self.n_actions)
|
||||
# return action
|
||||
def predict_action(self,state):
|
||||
''' predict action
|
||||
'''
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
|
||||
# print ("self.batch_size = ", self.batch_size)
|
||||
return
|
||||
else:
|
||||
if not self.update_flag:
|
||||
print("Begin to update!")
|
||||
self.update_flag = True
|
||||
# sample a batch of transitions from replay buffer
|
||||
(state_batch, action_batch, reward_batch, next_state_batch, done_batch), idxs_batch, is_weights_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1)
|
||||
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||||
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True
|
||||
next_max_q_value_batch = self.target_net(next_state_batch).max(1)[0].detach().unsqueeze(1)
|
||||
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch* (1-done_batch)
|
||||
|
||||
loss = torch.mean(torch.pow((q_value_batch - expected_q_value_batch) * torch.from_numpy(is_weights_batch).cuda(), 2))
|
||||
# loss = nn.MSELoss()(q_value_batch, expected_q_value_batch) # shape same to
|
||||
|
||||
abs_errors = np.sum(np.abs(q_value_batch.cpu().detach().numpy() - expected_q_value_batch.cpu().detach().numpy()), axis=1)
|
||||
self.memory.batch_update(idxs_batch, abs_errors)
|
||||
|
||||
# backpropagation
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
# clip to avoid gradient explosion
|
||||
for param in self.policy_net.parameters():
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
if self.sample_count % self.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
|
||||
def save_model(self, fpath):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(fpath).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), f"{fpath}/checkpoint.pt")
|
||||
|
||||
def load_model(self, fpath):
|
||||
checkpoint = torch.load(f"{fpath}/checkpoint.pt",map_location=self.device)
|
||||
self.target_net.load_state_dict(checkpoint)
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
Reference in New Issue
Block a user