This commit is contained in:
JohnJim0816
2021-03-31 15:37:09 +08:00
parent 6a92f97138
commit b6f63a91bf
65 changed files with 1244 additions and 459 deletions

View File

@@ -3,95 +3,108 @@
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-24 22:14:04
Date: 2021-03-29 10:37:32
LastEditor: John
LastEditTime: 2021-03-27 04:23:43
LastEditTime: 2021-03-31 14:58:49
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd()) # add current terminal path to sys.path
import gym
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
import numpy as np
import torch
import datetime
from HierarchicalDQN.agent import HierarchicalDQN
from common.plot import plot_rewards
from common.utils import save_results
import gym
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
from common.utils import save_results
from common.plot import plot_rewards,plot_losses
from HierarchicalDQN.agent import HierarchicalDQN
SEQUENCE = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(curr_path+"/saved_model/"):
os.mkdir(curr_path+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH):
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(curr_path+"/results/"):
os.mkdir(curr_path+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class HierarchicalDQNConfig:
def __init__(self):
self.algo = "DQN" # name of algo
self.algo = "H-DQN" # name of algo
self.gamma = 0.99
self.epsilon_start = 0.95 # start epsilon of e-greedy policy
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.01 # learning rate
self.memory_capacity = 800 # Replay Memory capacity
self.batch_size = 64
self.train_eps = 250 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # dimension of hidden layer
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory capacity
self.batch_size = 32
self.train_eps = 300 # 训练的episode数目
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # dimension of hidden layer
def train(cfg,env,agent):
def train(cfg, env, agent):
print('Start to train !')
rewards = []
ma_rewards = [] # moving average reward
ep_steps = []
ma_rewards = [] # moveing average reward
for i_episode in range(cfg.train_eps):
state = env.reset()
extrinsic_reward = 0
for i_step in range(cfg.train_steps):
goal= agent.set_goal(state)
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
meta_state = state
goal_state = np.concatenate([state, goal])
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
extrinsic_reward += reward
intrinsic_reward = 1.0 if goal == np.argmax(next_state) else 0.0
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate([next_state, goal]), done)
state = next_state
agent.update()
if done:
break
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,extrinsic_reward,i_step+1,done))
ep_steps.append(i_step)
rewards.append(extrinsic_reward)
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
intrinsic_reward = 1.0 if goal == np.argmax(
next_state) else 0.0
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
[next_state, onehot_goal]), done)
state = next_state
agent.update()
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_episode+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy ))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*extrinsic_reward)
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(extrinsic_reward)
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
return rewards, ma_rewards
if __name__ == "__main__":
cfg = HierarchicalDQNConfig()
env = gym.make('CartPole-v0')
env.seed(1)
env.seed(1)
cfg = HierarchicalDQNConfig()
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = HierarchicalDQN(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
agent = HierarchicalDQN(state_dim, action_dim, cfg)
rewards, ma_rewards = train(cfg, env, agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=RESULT_PATH)
plot_losses(agent.losses,algo=cfg.algo, path=RESULT_PATH)