This commit is contained in:
JohnJim0816
2021-03-31 15:37:09 +08:00
parent 6a92f97138
commit b6f63a91bf
65 changed files with 1244 additions and 459 deletions

View File

@@ -5,12 +5,17 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-03-26 17:17:17
LastEditTime: 2021-03-30 16:59:19
@Discription:
@Environment: python 3.7.7
'''
import sys,os
sys.path.append(os.getcwd()) # 添加当前终端路径
from pathlib import Path
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
@@ -18,58 +23,52 @@ from DQN.agent import DQN
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(curr_path+"/saved_model/"):
os.mkdir(curr_path+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(curr_path+"/results/"):
os.mkdir(curr_path+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class DQNConfig:
def __init__(self):
self.algo = "DQN" # 算法名称
self.gamma = 0.99
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
self.algo = "DQN" # name of algo
self.gamma = 0.95
self.epsilon_start = 1 # e-greedy策略的初始epsilon
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.01 # 学习率
self.memory_capacity = 800 # Replay Memory容量
self.batch_size = 64
self.epsilon_decay = 500
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory容量
self.batch_size = 32
self.train_eps = 300 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 128 # 神经网络隐藏层维度
self.hidden_dim = 256 # 神经网络隐藏层维度
def train(cfg,env,agent):
print('Start to train !')
rewards = []
ma_rewards = [] # 滑动平均的reward
ep_steps = []
ma_rewards = [] # moveing average reward
for i_episode in range(cfg.train_eps):
state = env.reset() # reset环境状态
state = env.reset()
done = False
ep_reward = 0
for i_step in range(cfg.train_steps):
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
while not done:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
state = next_state # 跳转到下一个状态
agent.update() # 每步更新网络
if done:
break
# 更新target network复制DQN中的所有weights and biases
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
ep_steps.append(i_step)
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
@@ -82,8 +81,8 @@ def train(cfg,env,agent):
if __name__ == "__main__":
cfg = DQNConfig()
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
env = gym.make('CartPole-v0')
env.seed(1)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DQN(state_dim,action_dim,cfg)