update
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-09 20:25:52
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-03-17 20:43:25
|
||||
LastEditTime: 2021-03-31 00:56:32
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -58,9 +58,7 @@ class DDPG:
|
||||
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
|
||||
# 注意critic将(s_t,a)作为输入
|
||||
policy_loss = self.critic(state, self.actor(state))
|
||||
|
||||
policy_loss = -policy_loss.mean()
|
||||
|
||||
next_action = self.target_actor(next_state)
|
||||
target_value = self.target_critic(next_state, next_action.detach())
|
||||
expected_value = reward + (1.0 - done) * self.gamma * target_value
|
||||
@@ -87,7 +85,7 @@ class DDPG:
|
||||
param.data * self.soft_tau
|
||||
)
|
||||
def save(self,path):
|
||||
torch.save(self.target_net.state_dict(), path+'DDPG_checkpoint.pth')
|
||||
torch.save(self.actor.state_dict(), path+'checkpoint.pt')
|
||||
|
||||
def load(self,path):
|
||||
self.actor.load_state_dict(torch.load(path+'DDPG_checkpoint.pth'))
|
||||
self.actor.load_state_dict(torch.load(path+'checkpoint.pt'))
|
||||
@@ -5,12 +5,17 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-03-19 19:57:00
|
||||
LastEditTime: 2021-03-31 01:04:48
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||||
from pathlib import Path
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
@@ -20,27 +25,23 @@ from DDPG.env import NormalizedActions,OUNoise
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(curr_path+"/saved_model/"): os.mkdir(curr_path+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(curr_path+"/results/"): os.mkdir(curr_path+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): os.mkdir(RESULT_PATH)
|
||||
|
||||
class DDPGConfig:
|
||||
def __init__(self):
|
||||
self.algo = 'DDPG'
|
||||
self.gamma = 0.99
|
||||
self.critic_lr = 1e-3
|
||||
self.actor_lr = 1e-4
|
||||
self.memory_capacity = 10000
|
||||
self.batch_size = 128
|
||||
self.train_eps =300
|
||||
self.train_steps = 200
|
||||
self.eval_eps = 200
|
||||
self.eval_steps = 200
|
||||
self.target_update = 4
|
||||
@@ -56,19 +57,19 @@ def train(cfg,env,agent):
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ou_noise.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg.train_steps):
|
||||
i_step = 0
|
||||
while not done:
|
||||
i_step += 1
|
||||
action = agent.choose_action(state)
|
||||
action = ou_noise.get_action(
|
||||
action, i_step) # 即paper中的random process
|
||||
action = ou_noise.get_action(action, i_step) # 即paper中的random process
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
agent.update()
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
|
||||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
|
||||
BIN
codes/DDPG/results/20210331-010047/ma_rewards_train.npy
Normal file
BIN
codes/DDPG/results/20210331-010047/rewards_curve_train.png
Normal file
|
After Width: | Height: | Size: 69 KiB |
BIN
codes/DDPG/results/20210331-010047/rewards_train.npy
Normal file
BIN
codes/DDPG/saved_model/20210331-010047/checkpoint.pt
Normal file
@@ -1,7 +1,7 @@
|
||||
# DQN
|
||||
|
||||
## 原理简介
|
||||
DQN是Q-leanning算法的优化和延伸,Q-leaning中使用有限的Q表存储值的信息,而DQN中则用神经网络替代Q表存储信息,这样更适用于高维的情况,相关知识基础可参考[datawhale李宏毅笔记-Q学习](https://datawhalechina.github.io/leedeeprl-notes/#/chapter6/chapter6)。
|
||||
DQN是Q-leanning算法的优化和延伸,Q-leaning中使用有限的Q表存储值的信息,而DQN中则用神经网络替代Q表存储信息,这样更适用于高维的情况,相关知识基础可参考[datawhale李宏毅笔记-Q学习](https://datawhalechina.github.io/easy-rl/#/chapter6/chapter6)。
|
||||
|
||||
论文方面主要可以参考两篇,一篇就是2013年谷歌DeepMind团队的[Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),一篇是也是他们团队后来在Nature杂志上发表的[Human-level control through deep reinforcement learning](https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf)。后者在算法层面增加target q-net,也可以叫做Nature DQN。
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-03-13 14:56:23
|
||||
LastEditTime: 2021-03-30 17:01:26
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -13,6 +13,8 @@ LastEditTime: 2021-03-13 14:56:23
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
@@ -23,61 +25,44 @@ from common.memory import ReplayBuffer
|
||||
from common.model import MLP
|
||||
class DQN:
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
self.sample_count = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + \
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
# target_net的初始模型参数完全复制policy_net
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
|
||||
# 可查parameters()与state_dict()的区别,前者require_grad=True
|
||||
self.policy_net = MLP(state_dim, action_dim,
|
||||
hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,
|
||||
hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.loss = 0
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
|
||||
def choose_action(self, state, train=True):
|
||||
def choose_action(self, state):
|
||||
'''选择动作
|
||||
'''
|
||||
if train:
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
self.sample_count += 1
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device=self.device, dtype=torch.float32)
|
||||
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.policy_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
else:
|
||||
with torch.no_grad(): # 取消保存梯度
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device='cpu', dtype=torch.float32) # 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.target_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
return action
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device=self.device, dtype=torch.float32)
|
||||
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.policy_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
|
||||
def update(self):
|
||||
|
||||
if len(self.memory) < self.batch_size:
|
||||
@@ -96,32 +81,31 @@ class DQN:
|
||||
next_state_batch = torch.tensor(
|
||||
next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(
|
||||
done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量
|
||||
done_batch), device=self.device)
|
||||
|
||||
'''计算当前(s_t,a)对应的Q(s_t, a)'''
|
||||
'''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])'''
|
||||
q_values = self.policy_net(state_batch).gather(
|
||||
dim=1, index=action_batch) # 等价于self.forward
|
||||
# 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states
|
||||
next_state_values = self.target_net(
|
||||
next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
|
||||
next_q_values = self.target_net(next_state_batch).max(
|
||||
1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
|
||||
# 计算 expected_q_value
|
||||
# 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + self.gamma * \
|
||||
next_state_values * (1-done_batch[0])
|
||||
expected_q_values = reward_batch + \
|
||||
self.gamma * next_q_values * (1-done_batch)
|
||||
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
|
||||
self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
|
||||
# 优化模型
|
||||
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
|
||||
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
|
||||
self.loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
|
||||
# for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
# param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # 更新模型
|
||||
|
||||
def save(self,path):
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
|
||||
def load(self,path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
|
||||
467
codes/DQN/main.ipynb
Normal file
@@ -5,12 +5,17 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-03-26 17:17:17
|
||||
LastEditTime: 2021-03-30 16:59:19
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||||
from pathlib import Path
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
@@ -18,58 +23,52 @@ from DQN.agent import DQN
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(curr_path+"/saved_model/"):
|
||||
os.mkdir(curr_path+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH):
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(curr_path+"/results/"):
|
||||
os.mkdir(curr_path+"/results/")
|
||||
if not os.path.exists(RESULT_PATH):
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.gamma = 0.99
|
||||
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
|
||||
self.algo = "DQN" # name of algo
|
||||
self.gamma = 0.95
|
||||
self.epsilon_start = 1 # e-greedy策略的初始epsilon
|
||||
self.epsilon_end = 0.01
|
||||
self.epsilon_decay = 200
|
||||
self.lr = 0.01 # 学习率
|
||||
self.memory_capacity = 800 # Replay Memory容量
|
||||
self.batch_size = 64
|
||||
self.epsilon_decay = 500
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 10000 # Replay Memory容量
|
||||
self.batch_size = 32
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.train_steps = 200 # 训练每个episode的最大长度
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.eval_steps = 200 # 测试每个episode的最大长度
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
self.hidden_dim = 128 # 神经网络隐藏层维度
|
||||
self.hidden_dim = 256 # 神经网络隐藏层维度
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start to train !')
|
||||
rewards = []
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
ep_steps = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset() # reset环境状态
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg.train_steps):
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
while not done:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||||
state = next_state # 跳转到下一个状态
|
||||
agent.update() # 每步更新网络
|
||||
if done:
|
||||
break
|
||||
# 更新target network,复制DQN中的所有weights and biases
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if i_episode % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
|
||||
ep_steps.append(i_step)
|
||||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
@@ -82,8 +81,8 @@ def train(cfg,env,agent):
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||||
env.seed(1) # 设置env随机种子
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(1)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = DQN(state_dim,action_dim,cfg)
|
||||
|
||||
|
Before Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 66 KiB |
BIN
codes/DQN/results/20210330-150205/ma_rewards_train.npy
Normal file
BIN
codes/DQN/results/20210330-150205/rewards_curve_train.png
Normal file
|
After Width: | Height: | Size: 50 KiB |
BIN
codes/DQN/results/20210330-150205/rewards_train.npy
Normal file
BIN
codes/DQN/results/20210330-165925/ma_rewards_train.npy
Normal file
BIN
codes/DQN/results/20210330-165925/rewards_curve_train.png
Normal file
|
After Width: | Height: | Size: 51 KiB |
BIN
codes/DQN/results/20210330-165925/rewards_train.npy
Normal file
BIN
codes/DQN/saved_model/20210330-150205/dqn_checkpoint.pth
Normal file
BIN
codes/DQN/saved_model/20210330-165925/dqn_checkpoint.pth
Normal file
@@ -5,12 +5,17 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 10:01:09
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-03-23 20:43:28
|
||||
LastEditTime: 2021-03-29 20:23:48
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||
from pathlib import Path
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
@@ -19,17 +24,15 @@ from DQN_cnn.agent import DQNcnn
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(curr_path+"/saved_model/"):
|
||||
os.mkdir(curr_path+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH):
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(curr_path+"/results/"):
|
||||
os.mkdir(curr_path+"/results/")
|
||||
if not os.path.exists(RESULT_PATH):
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:27:16
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-01-20 18:58:37
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import random
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # buffer的最大容量
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
'''以队列的方式将样本填入buffer中
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
'''随机采样batch_size个样本
|
||||
'''
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state, action, reward, next_state, done = zip(*batch)
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
'''返回buffer的长度
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:47:02
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-08-19 16:55:54
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states=4, n_actions=18):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的feature即环境的state数目
|
||||
n_actions: 输出的action总个数
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
@@ -1,51 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-12-22 15:22:17
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-01-21 14:30:38
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import datetime
|
||||
import os
|
||||
import argparse
|
||||
|
||||
ALGO_NAME = 'Double DQN'
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/'
|
||||
|
||||
TRAIN_LOG_DIR=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||||
EVAL_LOG_DIR=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||||
|
||||
def get_args():
|
||||
'''模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # q-learning中的gamma
|
||||
parser.add_argument("--epsilon_start", default=0.95,
|
||||
type=float) # 基于贪心选择action对应的参数epsilon
|
||||
parser.add_argument("--epsilon_end", default=0.01, type=float)
|
||||
parser.add_argument("--epsilon_decay", default=500, type=float)
|
||||
parser.add_argument("--policy_lr", default=0.01, type=float)
|
||||
parser.add_argument("--memory_capacity", default=1000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
|
||||
parser.add_argument("--batch_size", default=32, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--train_steps", default=200, type=int)
|
||||
parser.add_argument("--target_update", default=2, type=int,
|
||||
help="when(every default 2 eisodes) to update target net ") # 更新频率
|
||||
|
||||
parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200,
|
||||
type=int) # 训练每个episode的长度
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
@@ -1,48 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 16:30:09
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-12-22 15:24:31
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import os
|
||||
from params import ALGO_NAME
|
||||
def plot(item,ylabel='rewards_train', save_fig = True):
|
||||
'''plot using searborn to plot
|
||||
'''
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.plot(np.arange(len(item)), item)
|
||||
plt.title(ylabel+' of '+ALGO_NAME)
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('episodes')
|
||||
if save_fig:
|
||||
plt.savefig(os.path.dirname(__file__)+"/results/"+ylabel+".png")
|
||||
plt.show()
|
||||
|
||||
|
||||
# plt.show()
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.split(os.path.abspath(__file__))[0]+"/results/"
|
||||
tag = 'train'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot(steps,ylabel='steps_'+tag)
|
||||
tag = 'eval'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot(rewards,ylabel='rewards_'+tag)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot(steps,ylabel='steps_'+tag)
|
||||
|
Before Width: | Height: | Size: 74 KiB |
13
codes/HierarchicalDQN/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# Hierarchical DQN
|
||||
|
||||
## 原理简介
|
||||
|
||||
Hierarchical DQN是一种分层强化学习方法,与DQN相比增加了一个meta controller,
|
||||
|
||||

|
||||
|
||||
即学习时,meta controller每次会生成一个goal,然后controller或者说下面的actor就会达到这个goal,直到done为止。这就相当于给agent增加了一个队长,队长擅长制定局部目标,指导agent前行,这样应对一些每回合步数较长或者稀疏奖励的问题会有所帮助。
|
||||
|
||||
## 伪代码
|
||||
|
||||

|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-24 22:18:18
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-27 04:24:30
|
||||
LastEditTime: 2021-03-31 14:51:09
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -13,90 +13,103 @@ import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import random,math
|
||||
from HierarchicalDQN.model import MLP
|
||||
from common.memory import ReplayBuffer
|
||||
import torch.optim as optim
|
||||
from common.model import MLP
|
||||
from common.memory import ReplayBuffer
|
||||
|
||||
class HierarchicalDQN:
|
||||
def __init__(self,state_dim,action_dim,cfg):
|
||||
self.state_dim = state_dim
|
||||
self.action_dim = action_dim
|
||||
self.gamma = cfg.gamma
|
||||
self.device = cfg.device
|
||||
self.batch_size = cfg.batch_size
|
||||
self.sample_count = 0
|
||||
self.epsilon = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.frame_idx = 0
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
|
||||
self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.meta_target_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
|
||||
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.meta_memory = ReplayBuffer(cfg.memory_capacity)
|
||||
def to_onehot(x):
|
||||
oh = np.zeros(6)
|
||||
self.loss_numpy = 0
|
||||
self.meta_loss_numpy = 0
|
||||
self.losses = []
|
||||
self.meta_losses = []
|
||||
def to_onehot(self,x):
|
||||
oh = np.zeros(self.state_dim)
|
||||
oh[x - 1] = 1.
|
||||
return oh
|
||||
def set_goal(self,meta_state):
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
self.sample_count += 1
|
||||
if random.random() > self.epsilon:
|
||||
def set_goal(self,state):
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
meta_state = torch.tensor([meta_state], device=self.device, dtype=torch.float32)
|
||||
q_value = self.policy_net(meta_state)
|
||||
goal = q_value.max(1)[1].item()
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
goal = self.meta_policy_net(state).max(1)[1].item()
|
||||
else:
|
||||
goal = random.randrange(self.action_dim)
|
||||
goal = self.meta_policy_net(meta_state)
|
||||
onehot_goal = self.to_onehot(goal)
|
||||
return onehot_goal
|
||||
goal = random.randrange(self.state_dim)
|
||||
return goal
|
||||
def choose_action(self,state):
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
self.sample_count += 1
|
||||
if random.random() > self.epsilon:
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
q_value = self.policy_net(state)
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
self.update_policy()
|
||||
self.update_meta()
|
||||
def update_policy(self):
|
||||
if self.batch_size > len(self.memory):
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(
|
||||
state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch)
|
||||
next_state_values = self.target_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + self.gamma * next_state_values * (1-done_batch[0])
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1))
|
||||
return
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(state_batch,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch))
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||||
next_state_values = self.policy_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_values, expected_q_values)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
for param in self.policy_net.parameters():
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
|
||||
self.optimizer.step()
|
||||
self.loss_numpy = loss.detach().numpy()
|
||||
self.losses.append(self.loss_numpy)
|
||||
def update_meta(self):
|
||||
if self.batch_size > len(self.meta_memory):
|
||||
meta_state_batch, meta_action_batch, meta_reward_batch, next_meta_state_batch, meta_done_batch = self.memory.sample(self.batch_size)
|
||||
meta_state_batch = torch.tensor(meta_state_batch, device=self.device, dtype=torch.float)
|
||||
meta_action_batch = torch.tensor(meta_action_batch, device=self.device).unsqueeze(1)
|
||||
meta_reward_batch = torch.tensor(meta_reward_batch, device=self.device, dtype=torch.float)
|
||||
next_meta_state_batch = torch.tensor(next_meta_state_batch, device=self.device, dtype=torch.float)
|
||||
meta_done_batch = torch.tensor(np.float32(meta_done_batch), device=self.device).unsqueeze(1)
|
||||
meta_q_values = self.meta_policy_net(meta_state_batch).gather(dim=1, index=meta_action_batch)
|
||||
next_state_values = self.target_net(next_meta_state_batch).max(1)[0].detach()
|
||||
expected_meta_q_values = meta_reward_batch + self.gamma * next_state_values * (1-meta_done_batch[0])
|
||||
meta_loss = nn.MSEmeta_loss()(meta_q_values, expected_meta_q_values.unsqueeze(1))
|
||||
return
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(state_batch,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch))
|
||||
q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||||
next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||||
meta_loss = nn.MSELoss()(q_values, expected_q_values)
|
||||
self.meta_optimizer.zero_grad()
|
||||
meta_loss.backward()
|
||||
for param in self.meta_policy_net.parameters():
|
||||
for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.meta_optimizer.step()
|
||||
self.meta_loss_numpy = meta_loss.detach().numpy()
|
||||
self.meta_losses.append(self.meta_loss_numpy)
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.policy_net.state_dict(), path+'policy_checkpoint.pth')
|
||||
torch.save(self.meta_policy_net.state_dict(), path+'meta_checkpoint.pth')
|
||||
|
||||
def load(self, path):
|
||||
self.policy_net.load_state_dict(torch.load(path+'policy_checkpoint.pth'))
|
||||
self.meta_policy_net.load_state_dict(torch.load(path+'meta_checkpoint.pth'))
|
||||
|
||||
|
||||
|
||||
|
||||
BIN
codes/HierarchicalDQN/assets/image-20210331153115575.png
Normal file
|
After Width: | Height: | Size: 112 KiB |
BIN
codes/HierarchicalDQN/assets/image-20210331153542314.png
Normal file
|
After Width: | Height: | Size: 311 KiB |
477
codes/HierarchicalDQN/main.ipynb
Normal file
@@ -3,95 +3,108 @@
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-24 22:14:04
|
||||
Date: 2021-03-29 10:37:32
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-27 04:23:43
|
||||
LastEditTime: 2021-03-31 14:58:49
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
|
||||
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||
import gym
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import datetime
|
||||
import numpy as np
|
||||
import torch
|
||||
import datetime
|
||||
from HierarchicalDQN.agent import HierarchicalDQN
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
import gym
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
from common.utils import save_results
|
||||
from common.plot import plot_rewards,plot_losses
|
||||
from HierarchicalDQN.agent import HierarchicalDQN
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime(
|
||||
"%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
if not os.path.exists(curr_path+"/saved_model/"):
|
||||
os.mkdir(curr_path+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH):
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH):
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
if not os.path.exists(curr_path+"/results/"):
|
||||
os.mkdir(curr_path+"/results/")
|
||||
if not os.path.exists(RESULT_PATH):
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
|
||||
class HierarchicalDQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # name of algo
|
||||
self.algo = "H-DQN" # name of algo
|
||||
self.gamma = 0.99
|
||||
self.epsilon_start = 0.95 # start epsilon of e-greedy policy
|
||||
self.epsilon_start = 1 # start epsilon of e-greedy policy
|
||||
self.epsilon_end = 0.01
|
||||
self.epsilon_decay = 200
|
||||
self.lr = 0.01 # learning rate
|
||||
self.memory_capacity = 800 # Replay Memory capacity
|
||||
self.batch_size = 64
|
||||
self.train_eps = 250 # 训练的episode数目
|
||||
self.train_steps = 200 # 训练每个episode的最大长度
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.eval_steps = 200 # 测试每个episode的最大长度
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
self.hidden_dim = 256 # dimension of hidden layer
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 10000 # Replay Memory capacity
|
||||
self.batch_size = 32
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
self.hidden_dim = 256 # dimension of hidden layer
|
||||
|
||||
def train(cfg,env,agent):
|
||||
|
||||
def train(cfg, env, agent):
|
||||
print('Start to train !')
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average reward
|
||||
ep_steps = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
extrinsic_reward = 0
|
||||
for i_step in range(cfg.train_steps):
|
||||
goal= agent.set_goal(state)
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
goal = agent.set_goal(state)
|
||||
onehot_goal = agent.to_onehot(goal)
|
||||
meta_state = state
|
||||
goal_state = np.concatenate([state, goal])
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
extrinsic_reward += reward
|
||||
intrinsic_reward = 1.0 if goal == np.argmax(next_state) else 0.0
|
||||
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate([next_state, goal]), done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if done:
|
||||
break
|
||||
if i_episode % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,extrinsic_reward,i_step+1,done))
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(extrinsic_reward)
|
||||
extrinsic_reward = 0
|
||||
while not done and goal != np.argmax(state):
|
||||
goal_state = np.concatenate([state, onehot_goal])
|
||||
action = agent.choose_action(goal_state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
extrinsic_reward += reward
|
||||
intrinsic_reward = 1.0 if goal == np.argmax(
|
||||
next_state) else 0.0
|
||||
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
|
||||
[next_state, onehot_goal]), done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
|
||||
print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_episode+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy ))
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*extrinsic_reward)
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(extrinsic_reward)
|
||||
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete training!')
|
||||
return rewards,ma_rewards
|
||||
return rewards, ma_rewards
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = HierarchicalDQNConfig()
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(1)
|
||||
env.seed(1)
|
||||
cfg = HierarchicalDQNConfig()
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = HierarchicalDQN(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
agent = HierarchicalDQN(state_dim, action_dim, cfg)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH)
|
||||
plot_rewards(rewards, ma_rewards, tag="train",
|
||||
algo=cfg.algo, path=RESULT_PATH)
|
||||
plot_losses(agent.losses,algo=cfg.algo, path=RESULT_PATH)
|
||||
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-24 22:14:12
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-24 22:17:09
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
After Width: | Height: | Size: 73 KiB |
BIN
codes/HierarchicalDQN/results/20210331-134559/rewards_train.npy
Normal file
BIN
codes/HierarchicalDQN/results/20210331-145852/losses_curve.png
Normal file
|
After Width: | Height: | Size: 21 KiB |
|
After Width: | Height: | Size: 62 KiB |
BIN
codes/HierarchicalDQN/results/20210331-145852/rewards_train.npy
Normal file
|
Before Width: | Height: | Size: 39 KiB |
@@ -19,9 +19,10 @@
|
||||
## 运行环境
|
||||
|
||||
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
|
||||
## 使用说明
|
||||
|
||||
对应算法文件夹下运行```main.py```即可
|
||||
运行```main.py```或者```main.ipynb```
|
||||
## 算法进度
|
||||
|
||||
| 算法名称 | 相关论文材料 | 环境 | 备注 |
|
||||
@@ -29,17 +30,17 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
||||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||||
| [DQN](./DQN) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | 效果不好,待改进 |
|
||||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||||
| Hierarchical DQN | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | | |
|
||||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A2C | | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| A3C | | | |
|
||||
| SAC | | | |
|
||||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
| TD3 | [TD3 Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
| GAIL | | | |
|
||||
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ Note that ```model.py```,```memory.py```,```plot.py``` shall be utilized in diff
|
||||
python 3.7.9、pytorch 1.6.0、gym 0.18.0
|
||||
## Usage
|
||||
|
||||
Environment infomations see [环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md)
|
||||
run ```main.py``` or ```main.ipynb```
|
||||
|
||||
## Schedule
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 21:14:12
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-24 22:15:00
|
||||
LastEditTime: 2021-03-31 13:49:06
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -15,15 +15,15 @@ import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
state_dim: 输入的feature即环境的state数目
|
||||
action_dim: 输出的action总个数
|
||||
input_dim: 输入的feature即环境的state数目
|
||||
output_dim: 输出的action总个数
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
|
||||
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -32,10 +32,10 @@ class MLP(nn.Module):
|
||||
return self.fc3(x)
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
|
||||
def __init__(self, n_obs, output_dim, hidden_size, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_obs + action_dim, hidden_size)
|
||||
self.linear1 = nn.Linear(n_obs + output_dim, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, 1)
|
||||
# 随机初始化为较小的值
|
||||
@@ -51,11 +51,11 @@ class Critic(nn.Module):
|
||||
return x
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
|
||||
def __init__(self, n_obs, output_dim, hidden_size, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_obs, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, action_dim)
|
||||
self.linear3 = nn.Linear(hidden_size, output_dim)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
@@ -67,18 +67,18 @@ class Actor(nn.Module):
|
||||
return x
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim=256):
|
||||
def __init__(self, input_dim, output_dim, hidden_dim=256):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, action_dim),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
|
||||
@@ -5,13 +5,13 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-07 20:57:11
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-13 11:31:49
|
||||
LastEditTime: 2021-03-31 14:05:52
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
def plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path='./'):
|
||||
def plot_rewards(rewards,ma_rewards,tag="train",algo = "DQN",path='./'):
|
||||
sns.set()
|
||||
plt.title("average learning curve of {}".format(algo))
|
||||
plt.xlabel('epsiodes')
|
||||
@@ -20,4 +20,13 @@ def plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC
|
||||
plt.legend()
|
||||
plt.savefig(path+"rewards_curve_{}".format(tag))
|
||||
plt.show()
|
||||
|
||||
def plot_losses(losses,algo = "DQN",path='./'):
|
||||
sns.set()
|
||||
plt.title("loss curve of {}".format(algo))
|
||||
plt.xlabel('epsiodes')
|
||||
plt.plot(losses,label='rewards')
|
||||
plt.legend()
|
||||
plt.savefig(path+"losses_curve")
|
||||
plt.show()
|
||||
|
||||
|
||||