This commit is contained in:
JohnJim0816
2021-05-06 02:07:56 +08:00
parent 747f3238c0
commit b17c8f4e41
107 changed files with 1439 additions and 987 deletions

View File

@@ -0,0 +1,136 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2021-05-05 17:35:20
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from itertools import count
from PolicyGradient.agent import PolicyGradient
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class PGConfig:
def __init__(self):
self.algo = "PolicyGradient" # name of algo
self.env = 'CartPole-v0'
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
self.train_eps = 300 # 训练的episode数目
self.eval_eps = 50
self.batch_size = 8
self.lr = 0.01 # learning rate
self.gamma = 0.99
self.hidden_dim = 36 # dimmension of hidden layer
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check gpu
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
state_dim = env.observation_space.shape[0]
agent = PolicyGradient(state_dim,cfg)
return env,agent
def train(cfg,env,agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
state_pool = [] # 存放每batch_size个episode的state序列
action_pool = []
reward_pool = []
rewards = []
ma_rewards = []
for i_episode in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
state_pool.append(state)
action_pool.append(float(action))
reward_pool.append(reward)
state = next_state
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
if i_episode > 0 and i_episode % cfg.batch_size == 0:
agent.update(reward_pool,state_pool,action_pool)
state_pool = [] # 每个episode的state
action_pool = []
reward_pool = []
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('complete training')
return rewards, ma_rewards
def eval(cfg,env,agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = []
for i_episode in range(cfg.eval_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
state = next_state
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('complete evaling')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = PGConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)