This commit is contained in:
JohnJim0816
2021-05-06 02:07:56 +08:00
parent 747f3238c0
commit b17c8f4e41
107 changed files with 1439 additions and 987 deletions

121
codes/PPO/task0_train.py Normal file
View File

@@ -0,0 +1,121 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-22 16:18:10
LastEditor: John
LastEditTime: 2021-05-06 00:43:36
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from PPO.agent import PPO
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class PPOConfig:
def __init__(self) -> None:
self.env = 'CartPole-v0'
self.algo = 'PPO'
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.train_eps = 200 # max training episodes
self.eval_eps = 50
self.batch_size = 5
self.gamma=0.99
self.n_epochs = 4
self.actor_lr = 0.0003
self.critic_lr = 0.0003
self.gae_lambda=0.95
self.policy_clip=0.2
self.hidden_dim = 256
self.update_fre = 20 # frequency of agent update
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = PPO(state_dim,action_dim,cfg)
return env,agent
def train(cfg,env,agent):
print('Start to train !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards= []
ma_rewards = [] # moving average rewards
running_steps = 0
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
action, prob, val = agent.choose_action(state)
state_, reward, done, _ = env.step(action)
running_steps += 1
ep_reward += reward
agent.memory.push(state, action, prob, val, reward, done)
if running_steps % cfg.update_fre == 0:
agent.update()
state = state_
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
print('Complete training')
return rewards,ma_rewards
def eval(cfg,env,agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards= []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.eval_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
action, prob, val = agent.choose_action(state)
state_, reward, done, _ = env.step(action)
ep_reward += reward
state = state_
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
print('Complete evaling')
return rewards,ma_rewards
if __name__ == '__main__':
cfg = PPOConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)