update
This commit is contained in:
@@ -5,13 +5,14 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 16:14:34
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-17 12:35:06
|
||||
LastEditTime: 2021-05-05 16:58:39
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
import dill
|
||||
|
||||
class FisrtVisitMC:
|
||||
''' On-Policy First-Visit MC Control
|
||||
@@ -20,14 +21,14 @@ class FisrtVisitMC:
|
||||
self.action_dim = action_dim
|
||||
self.epsilon = cfg.epsilon
|
||||
self.gamma = cfg.gamma
|
||||
self.Q = defaultdict(lambda: np.zeros(action_dim))
|
||||
self.Q_table = defaultdict(lambda: np.zeros(action_dim))
|
||||
self.returns_sum = defaultdict(float) # sum of returns
|
||||
self.returns_count = defaultdict(float)
|
||||
|
||||
def choose_action(self,state):
|
||||
''' e-greed policy '''
|
||||
if state in self.Q.keys():
|
||||
best_action = np.argmax(self.Q[state])
|
||||
if state in self.Q_table.keys():
|
||||
best_action = np.argmax(self.Q_table[state])
|
||||
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
@@ -48,19 +49,17 @@ class FisrtVisitMC:
|
||||
# Calculate average return for this state over all sampled episodes
|
||||
self.returns_sum[sa_pair] += G
|
||||
self.returns_count[sa_pair] += 1.0
|
||||
self.Q[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
|
||||
self.Q_table[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
|
||||
def save(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
import dill
|
||||
torch.save(
|
||||
obj=self.Q,
|
||||
f=path,
|
||||
obj=self.Q_table,
|
||||
f=path+"Q_table",
|
||||
pickle_module=dill
|
||||
)
|
||||
|
||||
def load(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
import dill
|
||||
self.Q =torch.load(f=path,pickle_module=dill)
|
||||
self.Q_table =torch.load(f=path+"Q_table",pickle_module=dill)
|
||||
Reference in New Issue
Block a user