This commit is contained in:
JohnJim0816
2021-05-06 02:07:56 +08:00
parent 747f3238c0
commit b17c8f4e41
107 changed files with 1439 additions and 987 deletions

View File

@@ -5,13 +5,14 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:14:34
LastEditor: John
LastEditTime: 2021-03-17 12:35:06
LastEditTime: 2021-05-05 16:58:39
Discription:
Environment:
'''
import numpy as np
from collections import defaultdict
import torch
import dill
class FisrtVisitMC:
''' On-Policy First-Visit MC Control
@@ -20,14 +21,14 @@ class FisrtVisitMC:
self.action_dim = action_dim
self.epsilon = cfg.epsilon
self.gamma = cfg.gamma
self.Q = defaultdict(lambda: np.zeros(action_dim))
self.Q_table = defaultdict(lambda: np.zeros(action_dim))
self.returns_sum = defaultdict(float) # sum of returns
self.returns_count = defaultdict(float)
def choose_action(self,state):
''' e-greed policy '''
if state in self.Q.keys():
best_action = np.argmax(self.Q[state])
if state in self.Q_table.keys():
best_action = np.argmax(self.Q_table[state])
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
@@ -48,19 +49,17 @@ class FisrtVisitMC:
# Calculate average return for this state over all sampled episodes
self.returns_sum[sa_pair] += G
self.returns_count[sa_pair] += 1.0
self.Q[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
self.Q_table[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q,
f=path,
obj=self.Q_table,
f=path+"Q_table",
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
import dill
self.Q =torch.load(f=path,pickle_module=dill)
self.Q_table =torch.load(f=path+"Q_table",pickle_module=dill)

View File

@@ -1,88 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2021-03-17 12:35:36
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd())
import argparse
import datetime
from envs.racetrack_env import RacetrackEnv
from MonteCarlo.agent import FisrtVisitMC
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
os.mkdir(RESULT_PATH)
class MCConfig:
def __init__(self):
self.epsilon = 0.15 # epsilon: The probability to select a random action .
self.gamma = 0.9 # gamma: Gamma discount factor.
self.n_episodes = 150
self.n_steps = 2000
def get_mc_args():
'''set parameters
'''
parser = argparse.ArgumentParser()
parser.add_argument("--epsilon", default=0.15, type=float) # epsilon: The probability to select a random action . float between 0 and 1.
parser.add_argument("--gamma", default=0.9, type=float) # gamma: Gamma discount factor.
parser.add_argument("--n_episodes", default=150, type=int)
parser.add_argument("--n_steps", default=2000, type=int)
mc_cfg = parser.parse_args()
return mc_cfg
def mc_train(cfg,env,agent):
rewards = []
ma_rewards = [] # moving average rewards
for i_episode in range(cfg.n_episodes):
one_ep_transition = []
state = env.reset()
ep_reward = 0
while True:
# for t in range(cfg.n_steps):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
one_ep_transition.append((state, action, reward))
state = next_state
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
agent.update(one_ep_transition)
if (i_episode+1)%10==0:
print("Episode:{}/{}: Reward:{}".format(i_episode+1, mc_cfg.n_episodes,ep_reward))
return rewards,ma_rewards
if __name__ == "__main__":
mc_cfg = MCConfig()
env = RacetrackEnv()
action_dim=9
agent = FisrtVisitMC(action_dim,mc_cfg)
rewards,ma_rewards= mc_train(mc_cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

View File

@@ -0,0 +1,118 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2021-05-05 17:27:50
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import datetime
from common.utils import save_results,make_dir
from common.plot import plot_rewards
from MonteCarlo.agent import FisrtVisitMC
from envs.racetrack_env import RacetrackEnv
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class MCConfig:
def __init__(self):
self.algo = "MC" # name of algo
self.env = 'Racetrack'
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
# epsilon: The probability to select a random action .
self.epsilon = 0.15
self.gamma = 0.9 # gamma: Gamma discount factor.
self.train_eps = 200
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check gpu
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
action_dim = 9
agent = FisrtVisitMC(action_dim, cfg)
return env,agent
def train(cfg, env, agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
one_ep_transition = []
while True:
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward += reward
one_ep_transition.append((state, action, reward))
state = next_state
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
agent.update(one_ep_transition)
if (i_ep+1) % 10 == 0:
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
print('Complete training')
return rewards, ma_rewards
def eval(cfg, env, agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward += reward
state = next_state
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
if (i_ep+1) % 10 == 0:
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
return rewards, ma_rewards
if __name__ == "__main__":
cfg = MCConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)