update
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-24 22:18:18
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-31 14:51:09
|
||||
LastEditTime: 2021-05-04 22:39:34
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -65,11 +65,11 @@ class HierarchicalDQN:
|
||||
if self.batch_size > len(self.memory):
|
||||
return
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(state_batch,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch))
|
||||
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||||
next_state_values = self.policy_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||||
@@ -79,17 +79,17 @@ class HierarchicalDQN:
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
self.loss_numpy = loss.detach().numpy()
|
||||
self.loss_numpy = loss.detach().cpu().numpy()
|
||||
self.losses.append(self.loss_numpy)
|
||||
def update_meta(self):
|
||||
if self.batch_size > len(self.meta_memory):
|
||||
return
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(state_batch,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch))
|
||||
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
|
||||
q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||||
next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||||
@@ -99,7 +99,7 @@ class HierarchicalDQN:
|
||||
for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.meta_optimizer.step()
|
||||
self.meta_loss_numpy = meta_loss.detach().numpy()
|
||||
self.meta_loss_numpy = meta_loss.detach().cpu().numpy()
|
||||
self.meta_losses.append(self.meta_loss_numpy)
|
||||
|
||||
def save(self, path):
|
||||
|
||||
Reference in New Issue
Block a user