remove Qlearning
This commit is contained in:
@@ -1,38 +0,0 @@
|
||||
## CliffWalking-v0环境简介
|
||||
|
||||
悬崖寻路问题(CliffWalking)是指在一个4 x 12的网格中,智能体以网格的左下角位置为起点,以网格的下角位置为终点,目标是移动智能体到达终点位置,智能体每次可以在上、下、左、右这4个方向中移动一步,每移动一步会得到-1单位的奖励。
|
||||
|
||||

|
||||
|
||||
如图,红色部分表示悬崖,数字代表智能体能够观测到的位置信息,即observation,总共会有0-47等48个不同的值,智能体再移动中会有以下限制:
|
||||
|
||||
* 智能体不能移出网格,如果智能体想执行某个动作移出网格,那么这一步智能体不会移动,但是这个操作依然会得到-1单位的奖励
|
||||
|
||||
* 如果智能体“掉入悬崖” ,会立即回到起点位置,并得到-100单位的奖励
|
||||
|
||||
* 当智能体移动到终点时,该回合结束,该回合总奖励为各步奖励之和
|
||||
|
||||
实际的仿真界面如下:
|
||||
|
||||

|
||||
|
||||
由于从起点到终点最少需要13步,每步得到-1的reward,因此最佳训练算法下,每个episode下reward总和应该为-13。
|
||||
|
||||
|
||||
## 使用
|
||||
|
||||
train:
|
||||
|
||||
```python
|
||||
python main.py
|
||||
```
|
||||
|
||||
eval:
|
||||
|
||||
```python
|
||||
python main.py --train 0
|
||||
```
|
||||
tensorboard:
|
||||
```python
|
||||
tensorboard --logdir logs
|
||||
```
|
||||
@@ -1,91 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-12-12 10:13:47
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
class QLearning(object):
|
||||
def __init__(self,
|
||||
obs_dim,
|
||||
action_dim,
|
||||
learning_rate=0.01,
|
||||
gamma=0.9,
|
||||
epsilon_start=0.9,epsilon_end=0.1,epsilon_decay=200):
|
||||
self.action_dim = action_dim # 动作维度,有几个动作可选
|
||||
self.lr = learning_rate # 学习率
|
||||
self.gamma = gamma # reward 的衰减率
|
||||
self.epsilon = 0 # 按一定概率随机选动作,即 e-greedy 策略, 并且epsilon逐渐衰减
|
||||
self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减,所以需要计数
|
||||
self.epsilon_start = epsilon_start
|
||||
self.epsilon_end = epsilon_end
|
||||
self.epsilon_decay= epsilon_decay
|
||||
self.Q_table = np.zeros((obs_dim, action_dim)) # Q表
|
||||
|
||||
def sample(self, obs):
|
||||
'''根据输入观测值,采样输出的动作值,带探索,训练模型时使用
|
||||
'''
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if np.random.uniform(0, 1) > self.epsilon: # 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取
|
||||
action = self.predict(obs)
|
||||
else:
|
||||
action = np.random.choice(self.action_dim) #有一定概率随机探索选取一个动作
|
||||
return action
|
||||
def predict(self, obs):
|
||||
'''根据输入观测值,采样输出的动作值,不带探索,测试模型时使用
|
||||
'''
|
||||
Q_list = self.Q_table[obs, :]
|
||||
Q_max = np.max(Q_list)
|
||||
action_list = np.where(Q_list == Q_max)[0]
|
||||
action = np.random.choice(action_list) # Q_max可能对应多个 action ,可以随机抽取一个
|
||||
return action
|
||||
|
||||
def learn(self, obs, action, reward, next_obs, done):
|
||||
'''学习方法(off-policy),也就是更新Q-table的方法
|
||||
Args:
|
||||
obs [type]: 交互前的obs, s_t
|
||||
action [type]: 本次交互选择的action, a_t
|
||||
reward [type]: 本次动作获得的奖励r
|
||||
next_obs [type]: 本次交互后的obs, s_t+1
|
||||
done function: episode是否结束
|
||||
'''
|
||||
Q_predict = self.Q_table[obs, action]
|
||||
if done:
|
||||
Q_target = reward # 没有下一个状态了
|
||||
else:
|
||||
Q_target = reward + self.gamma * np.max(
|
||||
self.Q_table[next_obs, :]) # Q_table-learning
|
||||
self.Q_table[obs, action] += self.lr * (Q_target - Q_predict) # 修正q
|
||||
|
||||
def save_model(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
np.save(path, self.Q_table)
|
||||
def load_model(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
self.Q_table = np.load(path)
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 233 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 58 KiB |
@@ -1,199 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import gym
|
||||
import turtle
|
||||
import numpy as np
|
||||
|
||||
def env_init_1():
|
||||
''' 初始化CliffWalking-v0环境
|
||||
'''
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env)
|
||||
return env
|
||||
|
||||
def env_init_2(gridmap=None, is_slippery=False):
|
||||
if gridmap is None:
|
||||
gridmap = ['SFFF', 'FHFH', 'FFFH', 'HFFG']
|
||||
env = gym.make("FrozenLake-v0", desc=gridmap, is_slippery=False)
|
||||
env = FrozenLakeWapper(env)
|
||||
return env
|
||||
|
||||
|
||||
class FrozenLakeWapper(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.max_y = env.desc.shape[0]
|
||||
self.max_x = env.desc.shape[1]
|
||||
self.t = None
|
||||
self.unit = 50
|
||||
|
||||
def draw_box(self, x, y, fillcolor='', line_color='gray'):
|
||||
self.t.up()
|
||||
self.t.goto(x * self.unit, y * self.unit)
|
||||
self.t.color(line_color)
|
||||
self.t.fillcolor(fillcolor)
|
||||
self.t.setheading(90)
|
||||
self.t.down()
|
||||
self.t.begin_fill()
|
||||
for _ in range(4):
|
||||
self.t.forward(self.unit)
|
||||
self.t.right(90)
|
||||
self.t.end_fill()
|
||||
|
||||
def move_player(self, x, y):
|
||||
self.t.up()
|
||||
self.t.setheading(90)
|
||||
self.t.fillcolor('red')
|
||||
self.t.goto((x + 0.5) * self.unit, (y + 0.5) * self.unit)
|
||||
|
||||
def render(self):
|
||||
if self.t == None:
|
||||
self.t = turtle.Turtle()
|
||||
self.wn = turtle.Screen()
|
||||
self.wn.setup(self.unit * self.max_x + 100,
|
||||
self.unit * self.max_y + 100)
|
||||
self.wn.setworldcoordinates(0, 0, self.unit * self.max_x,
|
||||
self.unit * self.max_y)
|
||||
self.t.shape('circle')
|
||||
self.t.width(2)
|
||||
self.t.speed(0)
|
||||
self.t.color('gray')
|
||||
for i in range(self.desc.shape[0]):
|
||||
for j in range(self.desc.shape[1]):
|
||||
x = j
|
||||
y = self.max_y - 1 - i
|
||||
if self.desc[i][j] == b'S': # Start
|
||||
self.draw_box(x, y, 'white')
|
||||
elif self.desc[i][j] == b'F': # Frozen ice
|
||||
self.draw_box(x, y, 'white')
|
||||
elif self.desc[i][j] == b'G': # Goal
|
||||
self.draw_box(x, y, 'yellow')
|
||||
elif self.desc[i][j] == b'H': # Hole
|
||||
self.draw_box(x, y, 'black')
|
||||
else:
|
||||
self.draw_box(x, y, 'white')
|
||||
self.t.shape('turtle')
|
||||
|
||||
x_pos = self.s % self.max_x
|
||||
y_pos = self.max_y - 1 - int(self.s / self.max_x)
|
||||
self.move_player(x_pos, y_pos)
|
||||
|
||||
|
||||
class CliffWalkingWapper(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.t = None
|
||||
self.unit = 50
|
||||
self.max_x = 12
|
||||
self.max_y = 4
|
||||
|
||||
def draw_x_line(self, y, x0, x1, color='gray'):
|
||||
assert x1 > x0
|
||||
self.t.color(color)
|
||||
self.t.setheading(0)
|
||||
self.t.up()
|
||||
self.t.goto(x0, y)
|
||||
self.t.down()
|
||||
self.t.forward(x1 - x0)
|
||||
|
||||
def draw_y_line(self, x, y0, y1, color='gray'):
|
||||
assert y1 > y0
|
||||
self.t.color(color)
|
||||
self.t.setheading(90)
|
||||
self.t.up()
|
||||
self.t.goto(x, y0)
|
||||
self.t.down()
|
||||
self.t.forward(y1 - y0)
|
||||
|
||||
def draw_box(self, x, y, fillcolor='', line_color='gray'):
|
||||
self.t.up()
|
||||
self.t.goto(x * self.unit, y * self.unit)
|
||||
self.t.color(line_color)
|
||||
self.t.fillcolor(fillcolor)
|
||||
self.t.setheading(90)
|
||||
self.t.down()
|
||||
self.t.begin_fill()
|
||||
for i in range(4):
|
||||
self.t.forward(self.unit)
|
||||
self.t.right(90)
|
||||
self.t.end_fill()
|
||||
|
||||
def move_player(self, x, y):
|
||||
self.t.up()
|
||||
self.t.setheading(90)
|
||||
self.t.fillcolor('red')
|
||||
self.t.goto((x + 0.5) * self.unit, (y + 0.5) * self.unit)
|
||||
|
||||
def render(self):
|
||||
if self.t == None:
|
||||
self.t = turtle.Turtle()
|
||||
self.wn = turtle.Screen()
|
||||
self.wn.setup(self.unit * self.max_x + 100,
|
||||
self.unit * self.max_y + 100)
|
||||
self.wn.setworldcoordinates(0, 0, self.unit * self.max_x,
|
||||
self.unit * self.max_y)
|
||||
self.t.shape('circle')
|
||||
self.t.width(2)
|
||||
self.t.speed(0)
|
||||
self.t.color('gray')
|
||||
for _ in range(2):
|
||||
self.t.forward(self.max_x * self.unit)
|
||||
self.t.left(90)
|
||||
self.t.forward(self.max_y * self.unit)
|
||||
self.t.left(90)
|
||||
for i in range(1, self.max_y):
|
||||
self.draw_x_line(
|
||||
y=i * self.unit, x0=0, x1=self.max_x * self.unit)
|
||||
for i in range(1, self.max_x):
|
||||
self.draw_y_line(
|
||||
x=i * self.unit, y0=0, y1=self.max_y * self.unit)
|
||||
|
||||
for i in range(1, self.max_x - 1):
|
||||
self.draw_box(i, 0, 'black')
|
||||
self.draw_box(self.max_x - 1, 0, 'yellow')
|
||||
self.t.shape('turtle')
|
||||
|
||||
x_pos = self.s % self.max_x
|
||||
y_pos = self.max_y - 1 - int(self.s / self.max_x)
|
||||
self.move_player(x_pos, y_pos)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 环境1:FrozenLake, 可以配置冰面是否是滑的
|
||||
# 0 left, 1 down, 2 right, 3 up
|
||||
env = gym.make("FrozenLake-v0", is_slippery=False)
|
||||
env = FrozenLakeWapper(env)
|
||||
|
||||
# 环境2:CliffWalking, 悬崖环境
|
||||
# env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
# env = CliffWalkingWapper(env)
|
||||
|
||||
# 环境3:自定义格子世界,可以配置地图, S为出发点Start, F为平地Floor, H为洞Hole, G为出口目标Goal
|
||||
# gridmap = [
|
||||
# 'SFFF',
|
||||
# 'FHFF',
|
||||
# 'FFFF',
|
||||
# 'HFGF' ]
|
||||
# env = GridWorld(gridmap)
|
||||
|
||||
env.reset()
|
||||
for step in range(10):
|
||||
action = np.random.randint(0, 4)
|
||||
obs, reward, done, info = env.step(action)
|
||||
print('step {}: action {}, obs {}, reward {}, done {}, info {}'.format(\
|
||||
step, action, obs, reward, done, info))
|
||||
# env.render() # 渲染一帧图像
|
||||
@@ -1,146 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-01-05 09:41:34
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import gym
|
||||
from env import CliffWalkingWapper, FrozenLakeWapper
|
||||
from agent import QLearning
|
||||
import os
|
||||
import numpy as np
|
||||
import argparse
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from env import env_init_1
|
||||
from params import get_args
|
||||
from params import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
|
||||
from utils import save_results,save_model
|
||||
from plot import plot
|
||||
|
||||
def train(cfg):
|
||||
'''# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)'''
|
||||
env = env_init_1()
|
||||
agent = QLearning(
|
||||
obs_dim=env.observation_space.n,
|
||||
action_dim=env.action_space.n,
|
||||
learning_rate=cfg.policy_lr,
|
||||
gamma=cfg.gamma,
|
||||
epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay)
|
||||
render = False # 是否打开GUI画面
|
||||
rewards = [] # 记录所有episode的reward
|
||||
MA_rewards = [] # 记录滑动平均的reward
|
||||
steps = []# 记录所有episode的steps
|
||||
for i_episode in range(1,cfg.max_episodes+1):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_steps = 0 # 记录每个episode走了多少step
|
||||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
while True:
|
||||
action = agent.sample(obs) # 根据算法选择一个动作
|
||||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
# 训练 Q-learning算法
|
||||
agent.learn(obs, action, reward, next_obs, done) # 不需要下一步的action
|
||||
|
||||
obs = next_obs # 存储上一个观察值
|
||||
ep_reward += reward
|
||||
ep_steps += 1 # 计算step数
|
||||
if render:
|
||||
env.render() #渲染新的一帧图形
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_steps)
|
||||
rewards.append(ep_reward)
|
||||
'''计算滑动平均的reward'''
|
||||
if i_episode == 1:
|
||||
MA_rewards.append(ep_reward)
|
||||
else:
|
||||
MA_rewards.append(
|
||||
0.9*MA_rewards[-1]+0.1*ep_reward)
|
||||
print('Episode %s: steps = %s , reward = %.1f, explore = %.2f' % (i_episode, ep_steps,
|
||||
ep_reward,agent.epsilon))
|
||||
'''每隔20个episode渲染一下看看效果'''
|
||||
if i_episode % 20 == 0:
|
||||
render = True
|
||||
else:
|
||||
render = False
|
||||
print('Complete training!')
|
||||
save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,MA_rewards,tag='train',result_path=RESULT_PATH)
|
||||
plot(rewards)
|
||||
plot(MA_rewards,ylabel='moving_average_rewards_train')
|
||||
|
||||
def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||||
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env)
|
||||
agent = QLearning(
|
||||
obs_dim=env.observation_space.n,
|
||||
action_dim=env.action_space.n,
|
||||
learning_rate=cfg.policy_lr,
|
||||
gamma=cfg.gamma,
|
||||
epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay)
|
||||
agent.load_model(saved_model_path+'checkpoint.npy') # 导入保存的模型
|
||||
rewards = [] # 记录所有episode的reward
|
||||
MA_rewards = [] # 记录滑动平均的reward
|
||||
steps = []# 记录所有episode的steps
|
||||
for i_episode in range(1,10+1):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_steps = 0 # 记录每个episode走了多少step
|
||||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
while True:
|
||||
action = agent.predict(obs) # 根据算法选择一个动作
|
||||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
obs = next_obs # 存储上一个观察值
|
||||
time.sleep(0.5)
|
||||
env.render()
|
||||
ep_reward += reward
|
||||
ep_steps += 1 # 计算step数
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_steps)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动平均的reward
|
||||
if i_episode == 1:
|
||||
MA_rewards.append(ep_reward)
|
||||
else:
|
||||
MA_rewards.append(
|
||||
0.9*MA_rewards[-1]+0.1*ep_reward)
|
||||
print('Episode %s: steps = %s , reward = %.1f' % (i_episode, ep_steps, ep_reward))
|
||||
print('Complete training!')
|
||||
save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,MA_rewards,tag='train',result_path=RESULT_PATH)
|
||||
plot(rewards)
|
||||
plot(MA_rewards,ylabel='moving_average_rewards_train')
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
if cfg.train:
|
||||
train(cfg)
|
||||
eval(cfg)
|
||||
else:
|
||||
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||||
eval(cfg,saved_model_path=model_path)
|
||||
@@ -1,36 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-24 19:45:58
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-24 19:53:13
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import argparse
|
||||
import datetime
|
||||
import os
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
|
||||
def get_args():
|
||||
'''训练的模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.9,
|
||||
type=float, help="reward 的衰减率")
|
||||
parser.add_argument("--epsilon_start", default=0.9,
|
||||
type=float,help="e-greedy策略中初始epsilon")
|
||||
parser.add_argument("--epsilon_end", default=0.1, type=float,help="e-greedy策略中的结束epsilon")
|
||||
parser.add_argument("--epsilon_decay", default=200, type=float,help="e-greedy策略中epsilon的衰减率")
|
||||
parser.add_argument("--policy_lr", default=0.1, type=float,help="学习率")
|
||||
parser.add_argument("--max_episodes", default=500, type=int,help="训练的最大episode数目")
|
||||
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
@@ -1,35 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-07 20:57:11
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-10-07 21:00:29
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def plot(item,ylabel='rewards'):
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.plot(np.arange(len(item)), item)
|
||||
plt.title(ylabel+' of Q-learning')
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('episodes')
|
||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
rewards=np.load(output_path+"rewards_train.npy", )
|
||||
MA_rewards=np.load(output_path+"MA_rewards_train.npy")
|
||||
steps = np.load(output_path+"steps_train.npy")
|
||||
plot(rewards)
|
||||
plot(MA_rewards,ylabel='moving_average_rewards')
|
||||
plot(steps,ylabel='steps')
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 28 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 24 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 16 KiB |
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 27 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,29 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-24 19:50:18
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-24 20:20:46
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
def save_results(rewards,moving_average_rewards,tag='train',result_path='./result'):
|
||||
'''保存reward等结果
|
||||
'''
|
||||
if not os.path.exists(result_path): # 检测是否存在文件夹
|
||||
os.mkdir(result_path)
|
||||
np.save(result_path+'rewards_'+tag+'.npy', rewards)
|
||||
np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards)
|
||||
print('results saved!')
|
||||
|
||||
def save_model(agent,model_path='./saved_model'):
|
||||
if not os.path.exists(model_path): # 检测是否存在文件夹
|
||||
os.mkdir(model_path)
|
||||
agent.save_model(model_path+'checkpoint')
|
||||
print('model saved!')
|
||||
Reference in New Issue
Block a user