hot update
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:21:53
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-07-21 21:44:00
|
||||
LastEditTime: 2022-08-22 17:40:07
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -19,10 +19,11 @@ import torch
|
||||
import datetime
|
||||
import argparse
|
||||
from itertools import count
|
||||
|
||||
import torch.nn.functional as F
|
||||
from pg import PolicyGradient
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards
|
||||
from common.utils import save_results, make_dir,all_seed,save_args,plot_rewards
|
||||
from common.models import MLP
|
||||
from common.memories import PGReplay
|
||||
|
||||
|
||||
def get_args():
|
||||
@@ -32,112 +33,107 @@ def get_args():
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--lr',default=0.01,type=float,help="learning rate")
|
||||
parser.add_argument('--batch_size',default=8,type=int)
|
||||
parser.add_argument('--lr',default=0.005,type=float,help="learning rate")
|
||||
parser.add_argument('--update_fre',default=8,type=int)
|
||||
parser.add_argument('--hidden_dim',default=36,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=1,type=int,help="seed")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
args = parser.parse_args([])
|
||||
return args
|
||||
|
||||
class PGNet(MLP):
|
||||
''' instead of outputing action, PG Net outputs propabilities of actions, we can use class inheritance from MLP here
|
||||
'''
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = F.sigmoid(self.fc3(x))
|
||||
return x
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
def env_agent_config(cfg):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed=cfg.seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
agent = PolicyGradient(n_states,cfg)
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"state dim: {n_states}, action dim: {n_actions}")
|
||||
model = PGNet(n_states,1,hidden_dim=cfg.hidden_dim)
|
||||
memory = PGReplay()
|
||||
agent = PolicyGradient(n_states,model,memory,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
state_pool = [] # temp states pool per several episodes
|
||||
action_pool = []
|
||||
reward_pool = []
|
||||
print(f'Env:{cfg.env_name}, Algo:{cfg.algo_name}, Device:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for _ in count():
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
if done:
|
||||
reward = 0
|
||||
state_pool.append(state)
|
||||
action_pool.append(float(action))
|
||||
reward_pool.append(reward)
|
||||
agent.memory.push((state,float(action),reward))
|
||||
state = next_state
|
||||
if done:
|
||||
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
|
||||
break
|
||||
if i_ep > 0 and i_ep % cfg.batch_size == 0:
|
||||
agent.update(reward_pool,state_pool,action_pool)
|
||||
state_pool = []
|
||||
action_pool = []
|
||||
reward_pool = []
|
||||
if (i_ep+1) % cfg.update_fre == 0:
|
||||
agent.update()
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Finish training!')
|
||||
env.close() # close environment
|
||||
return rewards, ma_rewards
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
return res_dic
|
||||
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
print("start testing!")
|
||||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for _ in count():
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
action = agent.predict_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
if done:
|
||||
reward = 0
|
||||
state = next_state
|
||||
if done:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
|
||||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('完成测试!')
|
||||
print("finish testing!")
|
||||
env.close()
|
||||
return rewards, ma_rewards
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = Config()
|
||||
# 训练
|
||||
cfg = get_args()
|
||||
env, agent = env_agent_config(cfg)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果
|
||||
res_dic = train(cfg, env, agent)
|
||||
save_args(cfg,path = cfg.result_path) # save parameters
|
||||
agent.save_model(path = cfg.model_path) # save models
|
||||
save_results(res_dic, tag = 'train', path = cfg.result_path) # save results
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train") # plot results
|
||||
# testing
|
||||
env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step
|
||||
agent.load_model(path = cfg.model_path) # load model
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path = cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test")
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user