update ch1
This commit is contained in:
@@ -57,7 +57,7 @@
|
||||
|
||||
(4)智能体的动作会影响它随后得到的数据,这一点是非常重要的。在训练智能体的过程中,很多时 候我们也是通过正在学习的智能体与环境交互来得到数据的。所以如果在训练过程中,智能体不能保持稳 定,就会使我们采集到的数据非常糟糕。我们通过数据来训练智能体,如果数据有问题,整个训练过程就 会失败。所以在强化学习里面一个非常重要的问题就是,怎么让智能体的动作一直稳定地提升。
|
||||
|
||||
### 强化学习的例子
|
||||
### 1.1.2 强化学习的例子
|
||||
|
||||
为什么我们关注强化学习,其中非常重要的一个原因就是强化学习得到的模型可以有超人类的表现。 监督学习获取的监督数据,其实是人来标注的,比如 ImageNet 的图片的标签都是人类标注的。因此我们 可以确定监督学习算法的上限(upper bound)就是人类的表现,标注结果决定了它的表现永远不可能超 越人类。但是对于强化学习,它在环境里面自己探索,有非常大的潜力,它可以获得超越人类的能力的表 现,比如 DeepMind 的 AlphaGo 这样一个强化学习的算法可以把人类顶尖的棋手打败。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user