update PolicyGradient

This commit is contained in:
JohnJim0816
2020-11-27 18:34:04 +08:00
parent 9590e80a2b
commit abfe6ea62b
38 changed files with 210 additions and 22 deletions

View File

@@ -0,0 +1,42 @@
# Policy Gradient
实现的是Policy Gradient最基本的REINFORCE方法
## 原理讲解
参考我的博客[Policy Gradient算法实战](https://blog.csdn.net/JohnJim0/article/details/110236851)
## 环境
python 3.7.9
pytorch 1.6.0
tensorboard 2.3.0
torchvision 0.7.0
## 程序运行方法
train:
```python
python main.py
```
eval:
```python
python main.py --train 0
```
tensorboard
```python
tensorboard --logdir logs
```
## 参考
[REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703)
[Policy Gradient paper](https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf)
[REINFORCE](https://towardsdatascience.com/policy-gradient-methods-104c783251e0)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:27:44
LastEditor: John
LastEditTime: 2020-11-23 12:05:03
LastEditTime: 2020-11-23 17:04:37
Discription:
Environment:
'''
@@ -18,9 +18,9 @@ from model import FCN
class PolicyGradient:
def __init__(self, n_states,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
def __init__(self, state_dim,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
self.gamma = gamma
self.policy_net = FCN(n_states)
self.policy_net = FCN(state_dim)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr)
self.batch_size = batch_size
@@ -65,4 +65,8 @@ class PolicyGradient:
loss = -m.log_prob(action) * reward # Negtive score function x reward
# print(loss)
loss.backward()
self.optimizer.step()
self.optimizer.step()
def save_model(self,path):
torch.save(self.policy_net.state_dict(), path)
def load_model(self,path):
self.policy_net.load_state_dict(torch.load(path))

View File

@@ -14,6 +14,6 @@ import gym
def env_init():
env = gym.make('CartPole-v0') # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
n_states = env.observation_space.shape[0]
state_dim = env.observation_space.shape[0]
n_actions = env.action_space.n
return env,n_states,n_actions
return env,state_dim,n_actions

View File

@@ -5,28 +5,38 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2020-11-23 12:06:15
LastEditTime: 2020-11-24 19:52:40
Discription:
Environment:
'''
from itertools import count
import torch
import os
from torch.utils.tensorboard import SummaryWriter
from env import env_init
from params import get_args
from agent import PolicyGradient
from params import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
from utils import save_results,save_model
from plot import plot
def train(cfg):
env,n_states,n_actions = env_init()
env,state_dim,n_actions = env_init()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
agent = PolicyGradient(n_states,device = device,lr = cfg.policy_lr)
agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr)
'''下面带pool都是存放的transition序列用于gradient'''
state_pool = [] # 存放每batch_size个episode的state序列
action_pool = []
reward_pool = []
''' 存储每个episode的reward用于绘图'''
rewards = []
moving_average_rewards = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
writer = SummaryWriter(log_dir) # 使用tensorboard的writer
for i_episode in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for t in count():
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
@@ -39,14 +49,61 @@ def train(cfg):
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
# if i_episode % cfg.batch_size == 0:
if i_episode > 0 and i_episode % 5 == 0:
if i_episode > 0 and i_episode % cfg.batch_size == 0:
agent.update(reward_pool,state_pool,action_pool)
state_pool = [] # 每个episode的state
action_pool = []
reward_pool = []
rewards.append(ep_reward)
if i_episode == 0:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1)
writer.close()
print('Complete training')
save_model(agent,model_path=SAVED_MODEL_PATH)
'''存储reward等相关结果'''
save_results(rewards,moving_average_rewards,tag='train',result_path=RESULT_PATH)
plot(rewards)
plot(moving_average_rewards,ylabel='moving_average_rewards_train')
def eval(cfg,saved_model_path = SAVED_MODEL_PATH):
env,state_dim,n_actions = env_init()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr)
agent.load_model(saved_model_path+'checkpoint.pth')
rewards = []
moving_average_rewards = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
writer = SummaryWriter(log_dir) # 使用tensorboard的writer
for i_episode in range(cfg.eval_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
rewards.append(ep_reward)
if i_episode == 0:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1)
writer.close()
print('Complete evaling')
if __name__ == "__main__":
cfg = get_args()
train(cfg)
if cfg.train:
train(cfg)
eval(cfg)
else:
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
eval(cfg,saved_model_path=model_path)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:18:46
LastEditor: John
LastEditTime: 2020-11-23 01:58:22
LastEditTime: 2020-11-27 16:55:25
Discription:
Environment:
'''
@@ -13,11 +13,11 @@ import torch.nn as nn
import torch.nn.functional as F
class FCN(nn.Module):
''' 全连接网络'''
def __init__(self,n_states):
def __init__(self,state_dim):
super(FCN, self).__init__()
# 24和36为hidden layer的层数可根据n_states, n_actions的情况来改变
self.fc1 = nn.Linear(n_states, 24)
self.fc2 = nn.Linear(24, 36)
# 24和36为hidden layer的层数可根据state_dim, n_actions的情况来改变
self.fc1 = nn.Linear(state_dim, 36)
self.fc2 = nn.Linear(36, 36)
self.fc3 = nn.Linear(36, 1) # Prob of Left
def forward(self, x):

View File

@@ -5,15 +5,25 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:25:37
LastEditor: John
LastEditTime: 2020-11-22 23:32:44
LastEditTime: 2020-11-26 19:11:21
Discription: 存储参数
Environment:
'''
import argparse
import datetime
import os
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
def get_args():
'''训练参数'''
parser = argparse.ArgumentParser()
parser.add_argument("--train_eps", default=1200, type=int) # 训练的最大episode数目
parser.add_argument("--train", default=1, type=int) # 1 表示训练0表示只进行eval
parser.add_argument("--train_eps", default=300, type=int) # 训练的最大episode数目
parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目
parser.add_argument("--batch_size", default=4, type=int) # 用于gradient的episode数目
parser.add_argument("--policy_lr", default=0.01, type=float) # 学习率
config = parser.parse_args()
return config

View File

@@ -0,0 +1,46 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-23 13:48:46
LastEditor: John
LastEditTime: 2020-11-23 13:48:48
Discription:
Environment:
'''
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
def plot(item,ylabel='rewards_train', save_fig = True):
'''plot using searborn to plot
'''
sns.set()
plt.figure()
plt.plot(np.arange(len(item)), item)
plt.title(ylabel+' of DQN')
plt.ylabel(ylabel)
plt.xlabel('episodes')
if save_fig:
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
plt.show()
if __name__ == "__main__":
output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/"
tag = 'train'
rewards=np.load(output_path+"rewards_"+tag+".npy", )
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
steps=np.load(output_path+"steps_"+tag+".npy")
plot(rewards)
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
plot(steps,ylabel='steps_'+tag)
tag = 'eval'
rewards=np.load(output_path+"rewards_"+tag+".npy", )
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
steps=np.load(output_path+"steps_"+tag+".npy")
plot(rewards,ylabel='rewards_'+tag)
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
plot(steps,ylabel='steps_'+tag)

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

View File

@@ -0,0 +1,29 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-23 13:44:52
LastEditor: John
LastEditTime: 2020-11-23 13:45:42
Discription:
Environment:
'''
import os
import numpy as np
def save_results(rewards,moving_average_rewards,tag='train',result_path='./result'):
'''保存reward等结果
'''
if not os.path.exists(result_path): # 检测是否存在文件夹
os.mkdir(result_path)
np.save(result_path+'rewards_'+tag+'.npy', rewards)
np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards)
print('results saved!')
def save_model(agent,model_path='./saved_model'):
if not os.path.exists(model_path): # 检测是否存在文件夹
os.mkdir(model_path)
agent.save_model(model_path+'checkpoint.pth')
print('model saved')