fix some errors
This commit is contained in:
@@ -1,32 +1,33 @@
|
||||
# Tips of Q-learning
|
||||
## Double DQN
|
||||

|
||||
接下来我们要讲的是 train Q-learning 的一些 tip。第一个 tip 是做 `Double DQN`。那为什么要有Double DQN 呢?因为在实现上,你会发现 Q value 往往是被高估的。上图来自于 Double DQN 的原始paper,它想要显示的结果就是Q value 往往是被高估的。这边有 4 个不同的小游戏,横轴是training 的时间,红色锯齿状一直在变的线就是 Q-function 对不同的 state estimate 出来的平均Q value,有很多不同的 state,每个state 你都sample 一下,然后算它们的Q value,把它们平均起来。红色这一条线,它在training 的过程中会改变,但它是不断上升的,为什么它不断上升,因为 Q-function 是 depend on 你的policy 的。learn 的过程中你的 policy 越来越强,所以你得到Q 的value 会越来越大。在同一个state, 你得到expected reward 会越来越大,所以general 而言,这个值都是上升的,但这是Q network 估测出来的值。
|
||||
|
||||
接下来你真地去算它,那怎么真地去算?你有那个policy,然后真的去玩那个游戏。,就玩很多次,玩个1 百万次。然后就去真的估说,在某一个state, 你会得到的Q value,到底有多少。你会得到说在某一个state,采取某一个action。你接下来会得到accumulated reward 的总和是多少。你会发现估测出来的值是远比实际的值大。在每一个游戏都是这样,都大很多。所以今天要 propose Double DQN 的方法,它可以让估测的值跟实际的值是比较接近的。我们先看它的结果,蓝色的锯齿状的线是Double DQN 的Q network 所估测出来的Q value,蓝色的无锯齿状的线是真正的Q value,你会发现它们是比较接近的。 用 network 估测出来的就不用管它,比较没有参考价值。用 Double DQN 得出来真正的accumulated reward,在这3 个case,都是比原来的DQN 高的,代表 Double DQN learn 出来那个policy 比较强。所以它实际上得到的reward 是比较大的。虽然一般的DQN 的Q network 高估了自己会得到的reward,但实际上它得到的reward 是比较低的。
|
||||
接下来要讲的是 train Q-learning 的一些 tip。第一个 tip 是做 `Double DQN`。那为什么要有 Double DQN 呢?因为在实现上,你会发现 Q value 往往是被高估的。上图来自于 Double DQN 的原始 paper,它想要显示的结果就是 Q value 往往是被高估的。这边有 4 个不同的小游戏,横轴是 training 的时间,红色锯齿状一直在变的线就是 Q-function 对不同的 state estimate 出来的平均 Q value,有很多不同的 state,每个 state 你都 sample 一下,然后算它们的 Q value,把它们平均起来。红色这一条线,它在training 的过程中会改变,但它是不断上升的,为什么它不断上升,因为 Q-function 是 depend on 你的 policy 的。learn 的过程中你的 policy 越来越强,所以你得到 Q value 会越来越大。在同一个state, 你得到 expected reward 会越来越大,所以 general 而言,这个值都是上升的,但这是 Q-network 估测出来的值。
|
||||
|
||||
接下来你真地去算它,那怎么真地去算?你有那个policy,然后真的去玩那个游戏。就玩很多次,玩个一百万次。然后就去真地估说,在某一个 state, 你会得到的 Q value 到底有多少。你会得到说在某一个 state,采取某一个 action。你接下来会得到 accumulated reward 是多少。你会发现估测出来的值是远比实际的值大。在每一个游戏都是这样,都大很多。所以今天要 propose Double DQN 的方法,它可以让估测的值跟实际的值是比较接近的。我们先看它的结果,蓝色的锯齿状的线是Double DQN 的 Q-network 所估测出来的Q value,蓝色的无锯齿状的线是真正的Q value,你会发现它们是比较接近的。 用 network 估测出来的就不用管它,比较没有参考价值。用 Double DQN 得出来真正的 accumulated reward,在这 3 个case 都是比原来的DQN 高的,代表 Double DQN learn 出来那个 policy 比较强。所以它实际上得到的reward 是比较大的。虽然一般的 DQN 的 Q-network 高估了自己会得到的reward,但实际上它得到的 reward 是比较低的。
|
||||
|
||||

|
||||
|
||||
Q: 为什么Q value 总是被高估了呢?
|
||||
Q: 为什么 Q value 总是被高估了呢?
|
||||
|
||||
A: 因为实际上在做的时候,是要让左边这个式子跟右边我们这个target,越接近越好。那你会发现说,target 的值很容易一不小心就被设得太高。因为在算这个 target 的时候,我们实际上在做的事情是看哪一个a 可以得到最大的Q value,就把它加上去,就变成我们的target。所以假设有某一个action它得到的值是被高估的。
|
||||
A: 因为实际上在做的时候,是要让左边这个式子跟右边这个 target 越接近越好。那你会发现说,target 的值很容易一不小心就被设得太高。因为在算这个 target 的时候,我们实际上在做的事情是看哪一个a 可以得到最大的Q value,就把它加上去,就变成我们的target。所以假设有某一个 action 得到的值是被高估的。
|
||||
|
||||
举例来说, 现在有4 个actions,本来其实它们得到的值都是差不多的,它们得到的reward 都是差不多的。但是在estimate 的时候,那毕竟是个network。所以estimate 的时候是有误差的。所以假设今天是第一个action它被高估了,假设绿色的东西代表是被高估的量,它被高估了,那这个target 就会选这个action。然后就会选这个高估的Q value来加上$r_t$,来当作你的target。如果第4 个action 被高估了,那就会选第4 个action 来加上$r_t$ 来当作你的target value。所以你总是会选那个Q value 被高估的,你总是会选那个reward 被高估的action 当作这个max 的结果去加上$r_t$ 当作你的target。所以你的target 总是太大。
|
||||
举例来说, 现在有 4 个 actions,本来其实它们得到的值都是差不多的,它们得到的reward 都是差不多的。但是在estimate 的时候,那毕竟是个network。所以estimate 的时候是有误差的。所以假设今天是第一个action它被高估了,假设绿色的东西代表是被高估的量,它被高估了,那这个target 就会选这个action。然后就会选这个高估的Q value来加上$r_t$,来当作你的target。如果第4 个action 被高估了,那就会选第4 个action 来加上$r_t$ 来当作你的target value。所以你总是会选那个Q value 被高估的,你总是会选那个reward 被高估的action 当作这个max 的结果去加上$r_t$ 当作你的target。所以你的target 总是太大。
|
||||
|
||||

|
||||
Q: 怎么解决这target 总是太大的问题呢?
|
||||
|
||||
A: 在 Double DQN 里面,选action 的Q-function 跟算value 的Q-function,不是同一个。在原来的DQN 里面,你穷举所有的 a,把每一个a 都带进去, 看哪一个a 可以给你的Q value 最高,那你就把那个Q value 加上$r_t$。但是在 Double DQN 里面,你有两个Q network,第一个Q network,决定哪一个action 的Q value 最大,你用第一个Q network 去带入所有的 a,去看看哪一个Q value 最大,然后你决定你的action 以后。实际上你的Q value 是用$Q'$所算出来的,这样子有什么好处呢?为什么这样就可以避免over estimate 的问题呢?因为今天假设我们有两个 Q-function,假设第一个Q-function 它高估了它现在选出来的action a,那没关系,只要第二个Q-function $Q'$ 没有高估这个action a 的值,那你算出来的,就还是正常的值。假设反过来是 $Q'$ 高估了某一个action 的值,那也没差, 因为反正只要前面这个Q 不要选那个action 出来就没事了。这个就是 Double DQN 神奇的地方。
|
||||
A: 在 Double DQN 里面,选 action 的 Q-function 跟算 value 的 Q-function,不是同一个。在原来的DQN 里面,你穷举所有的 a,把每一个a 都带进去, 看哪一个 a 可以给你的 Q value 最高,那你就把那个 Q value 加上$r_t$。但是在 Double DQN 里面,你有两个 Q-network,第一个 Q-network,决定哪一个 action 的 Q value 最大,你用第一个 Q-network 去带入所有的 a,去看看哪一个Q value 最大。然后你决定你的action 以后,你的 Q value 是用 $Q'$ 算出来的,这样子有什么好处呢?为什么这样就可以避免 over estimate 的问题呢?因为今天假设我们有两个 Q-function,假设第一个Q-function 它高估了它现在选出来的action a,那没关系,只要第二个Q-function $Q'$ 没有高估这个action a 的值,那你算出来的,就还是正常的值。假设反过来是 $Q'$ 高估了某一个action 的值,那也没差, 因为反正只要前面这个Q 不要选那个action 出来就没事了。这个就是 Double DQN 神奇的地方。
|
||||
|
||||
Q: 哪来两个Q 跟$Q'$ 呢?哪来两个network 呢?
|
||||
Q: 哪来 Q 跟 $Q'$ 呢?哪来两个 network 呢?
|
||||
|
||||
A: 在实现上,你有两个Q network, 一个是target 的Q network,一个是真正你会update 的Q network。所以在 Double DQN 里面,你的实现方法会是拿你会update 参数的那个Q network 去选action,然后你拿target 的network,那个固定住不动的network 去算value。而那 Double DQN 相较于原来的DQN 的更改是最少的,它几乎没有增加任何的运算量。连新的network 都不用,因为你原来就有两个network 了。你唯一要做的事情只有,本来你在找最大的a 的时候,你在决定这个a 要放哪一个的时候,你是用$Q'$ 来算,你是用target network 来算,现在改成用另外一个会update 的Q network 来算。
|
||||
A: 在实现上,你有两个 Q-network, 一个是 target 的 Q-network,一个是真正你会 update 的 Q-network。所以在 Double DQN 里面,你的实现方法会是拿你会 update 参数的那个 Q-network 去选action,然后你拿target 的network,那个固定住不动的network 去算value。而 Double DQN 相较于原来的 DQN 的更改是最少的,它几乎没有增加任何的运算量,连新的network 都不用,因为你原来就有两个network 了。你唯一要做的事情只有,本来你在找最大的a 的时候,你在决定这个a 要放哪一个的时候,你是用$Q'$ 来算,你是用target network 来算,现在改成用另外一个会 update 的 Q-network 来算。
|
||||
|
||||
假如你今天只选一个tip 的话,正常人都是implement Double DQN,因为很容易实现。
|
||||
假如你今天只选一个tip 的话,正常人都是 implement Double DQN,因为很容易实现。
|
||||
|
||||
## Dueling DQN
|
||||

|
||||
第二个 tip 是 `Dueling DQN`。其实 Dueling DQN 也蛮好做的,相较于原来的DQN。它唯一的差别是改了network 的架构,Dueling DQN 唯一做的事情是改network 的架构。Q network 就是input state,output 就是每一个action 的Q value。dueling DQN 唯一做的事情,是改了network 的架构,其它的算法,你都不要去动它。
|
||||
第二个 tip 是 `Dueling DQN`。其实 Dueling DQN 也蛮好做的,相较于原来的DQN。它唯一的差别是改了network 的架构,Dueling DQN 唯一做的事情是改network 的架构。Q-network 就是input state,output 就是每一个action 的Q value。dueling DQN 唯一做的事情,是改了network 的架构,其它的算法,你都不要去动它。
|
||||
|
||||
Q: Dueling DQN 是怎么改了network 的架构呢?
|
||||
|
||||
@@ -72,13 +73,13 @@ $$
|
||||

|
||||
另外一个可以做的方法是,你可以balance MC 跟TD。MC 跟 TD 的方法各自有各自的优劣。我们怎么在MC 跟TD 里面取得一个平衡呢?我们的做法是这样,在TD 里面,在某一个state $s_t$采取某一个action $a_t$ 得到 reward $r_t$,接下来跳到那一个state $s_{t+1}$。但是我们可以不要只存一个step 的data,我们存 N 个step 的data。
|
||||
|
||||
我们记录在$s_t$ 采取$a_t$,得到$r_t$,会跳到什么样$s_t$。一直纪录到在第N 个step 以后,在$s_{t+N}$采取$a_{t+N}$得到 reward $r_{t+N}$,跳到$s_{t+N+1}$的这个经验,通通把它存下来。实际上你今天在做update 的时候, 在做你Q network learning 的时候,你的learning 的方法会是这样,你learning 的时候,要让 $Q(s_t,a_t)$ 跟你的target value 越接近越好。$\hat{Q}$ 所计算的不是$s_{t+1}$,而是$s_{t+N+1}$的。你会把 N 个step 以后的state 丢进来,去计算 N 个step 以后,你会得到的reward。要算 target value 的话,要再加上multi-step 的reward $\sum_{t^{\prime}=t}^{t+N} r_{t^{\prime}}$ ,multi-step 的 reward 是从时间 t 一直到 t+N 的 N 个reward 的和。然后希望你的 $Q(s_t,a_t)$ 和 target value 越接近越好。
|
||||
我们记录在$s_t$ 采取$a_t$,得到$r_t$,会跳到什么样$s_t$。一直纪录到在第N 个step 以后,在$s_{t+N}$采取$a_{t+N}$得到 reward $r_{t+N}$,跳到$s_{t+N+1}$的这个经验,通通把它存下来。实际上你今天在做update 的时候, 在做你 Q-network learning 的时候,你的learning 的方法会是这样,你learning 的时候,要让 $Q(s_t,a_t)$ 跟你的target value 越接近越好。$\hat{Q}$ 所计算的不是$s_{t+1}$,而是$s_{t+N+1}$的。你会把 N 个step 以后的state 丢进来,去计算 N 个step 以后,你会得到的reward。要算 target value 的话,要再加上multi-step 的reward $\sum_{t^{\prime}=t}^{t+N} r_{t^{\prime}}$ ,multi-step 的 reward 是从时间 t 一直到 t+N 的 N 个reward 的和。然后希望你的 $Q(s_t,a_t)$ 和 target value 越接近越好。
|
||||
|
||||
你会发现说这个方法就是MC 跟TD 的结合。因为它就有 MC 的好处跟坏处,也有 TD 的好处跟坏处。如果看它的这个好处的话,因为我们现在 sample 了比较多的step,之前是只sample 了一个step, 所以某一个step 得到的data 是real 的,接下来都是Q value 估测出来的。现在sample 比较多step,sample N 个step 才估测value,所以估测的部分所造成的影响就会比小。当然它的坏处就跟MC 的坏处一样,因为你的 r 比较多项,你把 N 项的 r 加起来,你的variance 就会比较大。但是你可以去调这个N 的值,去在variance 跟不精确的 Q 之间取得一个平衡。N 就是一个hyper parameter,你要调这个N 到底是多少,你是要多 sample 三步,还是多 sample 五步。
|
||||
|
||||
## Noisy Net
|
||||

|
||||
有一个技术是要improve 这个exploration 这件事,我们之前讲的Epsilon Greedy 这样的 exploration 是在action 的space 上面加noise,但是有另外一个更好的方法叫做`Noisy Net`,它是在参数的space 上面加noise。Noisy Net 的意思是说,每一次在一个episode 开始的时候,在你要跟环境互动的时候,你就把你的Q-function 拿出来,Q-function 里面其实就是一个network ,就变成你把那个network 拿出来,在network 的每一个参数上面加上一个Gaussian noise。那你就把原来的Q-function 变成$\tilde{Q}$ 。因为$\hat{Q}$ 已经用过,$\hat{Q}$ 是那个target network,我们用 $\tilde{Q}$ 来代表一个`Noisy Q-function`。我们把每一个参数都可能都加上一个Gaussian noise,就得到一个新的network 叫做$\tilde{Q}$。这边要注意在每个episode 开始的时候,开始跟环境互动之前,我们就 sample network。接下来你就会用这个固定住的 noisy network 去玩这个游戏,直到游戏结束,你才重新再去sample 新的noise。OpenAI 跟 Deep mind 又在同时间 propose 一模一样的方法,通通都publish 在ICLR 2018,两篇paper 的方法就是一样的。不一样的地方是,他们用不同的方法,去加noise。OpenAI 加的方法好像比较简单,他就直接加一个 Gaussian noise 就结束了,就你把每一个参数,每一个weight都加一个Gaussian noise 就结束了。Deep mind 做比较复杂,他们的noise 是由一组参数控制的,也就是说 network 可以自己决定说它那个noise 要加多大,但是概念就是一样的。总之就是把你的Q-function的里面的那个network 加上一些noise,把它变得有点不一样,跟原来的Q-function 不一样,然后拿去跟环境做互动。两篇paper 里面都有强调说,你这个参数虽然会加noise,但在同一个episode 里面你的参数就是固定的,你是在换episode, 玩第二场新的游戏的时候,你才会重新sample noise,在同一场游戏里面就是同一个noisy Q network 在玩那一场游戏,这件事非常重要。为什么这件事非常重要呢?因为这是导致了Noisy Net 跟原来的Epsilon Greedy 或其它在action 做sample 方法的本质上的差异。
|
||||
有一个技术是要improve 这个exploration 这件事,我们之前讲的Epsilon Greedy 这样的 exploration 是在action 的space 上面加noise,但是有另外一个更好的方法叫做`Noisy Net`,它是在参数的space 上面加noise。Noisy Net 的意思是说,每一次在一个episode 开始的时候,在你要跟环境互动的时候,你就把你的Q-function 拿出来,Q-function 里面其实就是一个network ,就变成你把那个network 拿出来,在network 的每一个参数上面加上一个Gaussian noise。那你就把原来的Q-function 变成$\tilde{Q}$ 。因为$\hat{Q}$ 已经用过,$\hat{Q}$ 是那个target network,我们用 $\tilde{Q}$ 来代表一个`Noisy Q-function`。我们把每一个参数都可能都加上一个Gaussian noise,就得到一个新的network 叫做$\tilde{Q}$。这边要注意在每个episode 开始的时候,开始跟环境互动之前,我们就 sample network。接下来你就会用这个固定住的 noisy network 去玩这个游戏,直到游戏结束,你才重新再去sample 新的noise。OpenAI 跟 Deep mind 又在同时间 propose 一模一样的方法,通通都publish 在ICLR 2018,两篇paper 的方法就是一样的。不一样的地方是,他们用不同的方法,去加noise。OpenAI 加的方法好像比较简单,他就直接加一个 Gaussian noise 就结束了,就你把每一个参数,每一个weight都加一个Gaussian noise 就结束了。Deep mind 做比较复杂,他们的noise 是由一组参数控制的,也就是说 network 可以自己决定说它那个noise 要加多大,但是概念就是一样的。总之就是把你的Q-function的里面的那个network 加上一些noise,把它变得有点不一样,跟原来的Q-function 不一样,然后拿去跟环境做互动。两篇paper 里面都有强调说,你这个参数虽然会加noise,但在同一个episode 里面你的参数就是固定的,你是在换episode, 玩第二场新的游戏的时候,你才会重新sample noise,在同一场游戏里面就是同一个noisy Q-network 在玩那一场游戏,这件事非常重要。为什么这件事非常重要呢?因为这是导致了Noisy Net 跟原来的Epsilon Greedy 或其它在action 做sample 方法的本质上的差异。
|
||||
|
||||

|
||||
|
||||
@@ -91,7 +92,7 @@ $$
|
||||
|
||||

|
||||
|
||||
Distributional Q-function 它想要做的事情是model distribution,怎么做呢?在原来的 Q-function 里面,假设你只能够采取 $a_1$, $a_2$, $a_3$, 3 个actions,那你就是input 一个state,output 3 个values。3 个values 分别代表3 个actions 的Q value,但是这个 Q value 是一个distribution 的期望值。所以 Distributional Q-function 的想法就是何不直接output 那个 distribution。但是要直接output 一个distribution 也不知道怎么做嘛。实际上的做法是说, 假设 distribution 的值就分布在某一个 range 里面,比如说-10 到10,那把-10 到10 中间拆成一个一个的bin,拆成一个一个的长条图。举例来说,在这个例子里面,每一个action 的 reward 的space 就拆成 5 个bin。假设reward 可以拆成5 个bin 的话,今天你的Q-function 的output 是要预测说,你在某一个 state,采取某一个action,你得到的reward,落在某一个bin 里面的概率。所以其实这边的概率的和,这些绿色的bar 的和应该是 1,它的高度代表说,在某一个state,采取某一个action 的时候,它落在某一个bin 的机率。这边绿色的代表action 1,红色的代表action 2,蓝色的代表action 3。所以今天你就可以真的用Q-function 去 estimate $a_1$ 的distribution,$a_2$ 的distribution,$a_3$ 的distribution。那实际上在做testing 的时候, 我们还是要选某一个action去执行嘛,那选哪一个action 呢?实际上在做的时候,还是选这个mean 最大的那个action 去执行。但假设我们今天可以 model distribution 的话,除了选mean 最大的以外,也许在未来你可以有更多其他的运用。举例来说,你可以考虑它的distribution 长什么样子。若distribution variance 很大,代表说采取这个action 虽然mean 可能平均而言很不错,但也许风险很高,你可以train一个network 它是可以规避风险的。就在 2 个action mean 都差不多的情况下,也许可以选一个风险比较小的 action 来执行,这是 Distributional Q-function 的好处。关于怎么train 这样的Q network 的细节,我们就不讲,你只要记得说 Q network 有办法output 一个distribution 就对了。我们可以不只是估测得到的期望reward mean 的值。我们其实是可以估测一个distribution 的。
|
||||
Distributional Q-function 它想要做的事情是model distribution,怎么做呢?在原来的 Q-function 里面,假设你只能够采取 $a_1$, $a_2$, $a_3$, 3 个actions,那你就是input 一个state,output 3 个values。3 个values 分别代表3 个actions 的Q value,但是这个 Q value 是一个distribution 的期望值。所以 Distributional Q-function 的想法就是何不直接output 那个 distribution。但是要直接output 一个distribution 也不知道怎么做嘛。实际上的做法是说, 假设 distribution 的值就分布在某一个 range 里面,比如说-10 到10,那把-10 到10 中间拆成一个一个的bin,拆成一个一个的长条图。举例来说,在这个例子里面,每一个action 的 reward 的space 就拆成 5 个bin。假设reward 可以拆成5 个bin 的话,今天你的Q-function 的output 是要预测说,你在某一个 state,采取某一个action,你得到的reward,落在某一个bin 里面的概率。所以其实这边的概率的和,这些绿色的bar 的和应该是 1,它的高度代表说,在某一个state,采取某一个action 的时候,它落在某一个bin 的机率。这边绿色的代表action 1,红色的代表action 2,蓝色的代表action 3。所以今天你就可以真的用Q-function 去 estimate $a_1$ 的distribution,$a_2$ 的distribution,$a_3$ 的distribution。那实际上在做testing 的时候, 我们还是要选某一个action去执行嘛,那选哪一个action 呢?实际上在做的时候,还是选这个mean 最大的那个action 去执行。但假设我们今天可以 model distribution 的话,除了选mean 最大的以外,也许在未来你可以有更多其他的运用。举例来说,你可以考虑它的distribution 长什么样子。若distribution variance 很大,代表说采取这个action 虽然mean 可能平均而言很不错,但也许风险很高,你可以train一个network 它是可以规避风险的。就在 2 个action mean 都差不多的情况下,也许可以选一个风险比较小的 action 来执行,这是 Distributional Q-function 的好处。关于怎么train 这样的 Q-network 的细节,我们就不讲,你只要记得说 Q-network 有办法output 一个distribution 就对了。我们可以不只是估测得到的期望reward mean 的值。我们其实是可以估测一个distribution 的。
|
||||
|
||||
## Rainbow
|
||||
|
||||
|
||||
Reference in New Issue
Block a user