fix some errors
This commit is contained in:
@@ -2,15 +2,17 @@
|
||||
|
||||
这节课我们通过最简单的`表格型的方法`来讲解如何使用 value-based 方法去求解强化学习。
|
||||
|
||||
## Sarsa
|
||||
|
||||

|
||||
|
||||
强化学习的三个重要的要素:状态动作和奖励。强化学习智能体跟环境是一步一步交互的,就是我先观察一下状态,然后再输入动作。再观察一下状态,再输出动作,拿到这些reward 。它是一个跟时间相关的一个序列决策的问题。
|
||||
强化学习的三个重要的要素:状态动作和奖励。强化学习智能体跟环境是一步一步交互的,就是我先观察一下状态,然后再输入动作。再观察一下状态,再输出动作,拿到这些 reward 。它是一个跟时间相关的一个序列决策的问题。
|
||||
|
||||
举个例子,在 $t-1$ 时刻,我看到了熊对我招手,那我下意识的可能输出的动作就是我赶紧跑路。熊看到了有人跑了,可能就觉得发现猎物,开始发动攻击。而在 $t$ 时刻的话,我如果选择装死的动作,可能熊咬了咬我那个摔了几下就发现就觉得挺无趣的,可能会走开。那这个时候,我再跑路的话可能就跑路成功了,就是大概是这样子的一个序列决策的过程。
|
||||
|
||||
当然在输出每一个动作之前,其实你都是可以选择不同的动作。比如说在 $t$ 时刻,我选择跑路的时候,熊已经追上来了,如果说 $t$ 时刻,我没有选择装死,而我是选择跑路的话,这个时候熊已经追上了,那这个时候,其实我有两种情况转移到不同的状态去,就我有一定的概率可以逃跑成功,也有很大的概率我会逃跑失败。那我们就用状态转移概率 $p\left[s_{t+1}, r_{t} \mid s_{t}, a_{t}\right]$ 来表述说在 $s_t$ 的状态选择了 $a_t$ 的动作的时候,转移到 $s_{t+1}$ ,而且拿到 $r_t$ 的概率是多少。
|
||||
|
||||
我们就说这样子的一个状态转移概率是符合马尔科夫的,因为这个状态转移概率,它是下一时刻的状态是取决于当前的状态,它和之前的 $s_{t-1}$ 和 $s_{t-2}$ 都没有什么关系。然后再加上说这个过程也取决于智能体跟环境交互的这个$a_t$ ,所以有一个决策的一个过程在里面。我们就称这样的一个过程为马尔可夫决策过程(MDP)。
|
||||
这样子的一个状态转移概率是具有`马尔科夫性质`的(系统下一时刻的状态仅由当前时刻的状态决定,不依赖于以往任何状态)。因为这个状态转移概率,它是下一时刻的状态是取决于当前的状态,它和之前的 $s_{t-1}$ 和 $s_{t-2}$ 都没有什么关系。然后再加上说这个过程也取决于智能体跟环境交互的这个$a_t$ ,所以有一个决策的一个过程在里面。我们就称这样的一个过程为`马尔可夫决策过程(MDP)`。
|
||||
|
||||
MDP 就是序列决策这样一个经典的表达方式。MDP 也是强化学习里面一个非常基本的学习框架。像之前的这四个状态、动作、奖励和状态转移概率,S,A,P,R,这四个合集就构成了强化学习 MDP 的四元组,那后面其实也可能会再加个衰减因子构成五元组。
|
||||
|
||||
@@ -22,18 +24,18 @@ MDP 就是序列决策这样一个经典的表达方式。MDP 也是强化学习
|
||||
|
||||
我们把这些可能的动作和可能的状态转移的关系画成这样子的一个树状图。它们之间的关系就是一个从 $s_t$ 到 $a_t$ ,再到 $s_{t+1}$ ,再到 $a_{t+1}$,再到 $s_{t+2}$ 这样子的一个过程。
|
||||
|
||||
我们去跟环境交互,我们只能走完整的一条通路。这里面产生了一系列的一个决策的过程,就是我们跟环境交互产生了一个经验。然后我们会使用 P 函数和 R 函数来去描述环境。P 函数就是状态转移的概率,R 函数就是Reward function。P函数实际上反映的是环境的一个随机性。比方说,在熊发怒的情况下,我如果选择装死,假设熊看到人装死就一定会走的话,我们就称在这里面的这个状态转移概率就是百分之百。但如果说在熊发怒的情况下,我选择跑路而导致说我有可能跑成功以及跑失败,出现这两种情况。那我们就可以用概率去表达一下说转移到其中一种情况的概率大概 10%,另外一种情况的概率大概是90%会跑失败。**如果我们知道这些状态转移概率和奖励函数的话,我们就说这个环境是已知的,因为我们是用这两个函数去描述环境的。**如果是已知的话,我们其实可以用动态规划去计算说,我如果要逃脱熊,那么能够逃脱熊概率最大的最优策略是什么。很多强化学习的经典的算法都是 model-free 的,就是环境是未知的这样子的一个情况下,我们强化学习怎么去解决。
|
||||
我们去跟环境交互,我们只能走完整的一条通路。这里面产生了一系列的一个决策的过程,就是我们跟环境交互产生了一个经验。然后我们会使用 P 函数和 R 函数来去描述环境。P 函数就是状态转移的概率,R 函数就是 Reward function。P 函数实际上反映的是环境的一个随机性。比方说,在熊发怒的情况下,我如果选择装死,假设熊看到人装死就一定会走的话,我们就称在这里面的这个状态转移概率就是百分之百。但如果说在熊发怒的情况下,我选择跑路而导致说我有可能跑成功以及跑失败,出现这两种情况。那我们就可以用概率去表达一下说转移到其中一种情况的概率大概 10%,另外一种情况的概率大概是90%会跑失败。**如果我们知道这些状态转移概率和奖励函数的话,我们就说这个环境是已知的,因为我们是用这两个函数去描述环境的。**如果是已知的话,我们其实可以用动态规划去计算说,我如果要逃脱熊,那么能够逃脱熊概率最大的最优策略是什么。很多强化学习的经典的算法都是 model-free 的,就是环境是未知的这样子的一个情况下,我们强化学习怎么去解决。
|
||||
|
||||

|
||||
因为现实世界中人类第一次遇到熊之前,我们根本不知道我们能不能跑得过熊。所以刚刚那个10%、90%的概率也就是虚构出来的概率,熊到底在什么时候会往什么方向去转变的话,我们经常是不知道的。我们是处在一个未知的环境里的,也就是这一系列的决策的 P 函数和 R 函数是未知的。这就是 model-based 跟 model-free 的一个最大的区别。强化学习就是可以用来解决用完全未知的和随机的环境。
|
||||
|
||||
强化学习要像人类一样去学习了,人类学习的话就是一条路一条路的去尝试一下,先走一条路,我看看结果到底是什么。多试几次,只要能活命的,我们其实可以慢慢的了解哪个状态会更好。我们用价值函数 $V(s)$ 来代表这个状态是好的还是坏的。然后用这个 Q 函数来判断说在什么状态下做什么动作能够拿到最大奖励,我们用Q函数来表示这个状态动作值。
|
||||
强化学习要像人类一样去学习了,人类学习的话就是一条路一条路的去尝试一下,先走一条路,我看看结果到底是什么。多试几次,只要能活命的,我们其实可以慢慢的了解哪个状态会更好。我们用价值函数 $V(s)$ 来代表这个状态是好的还是坏的。然后用这个 Q 函数来判断说在什么状态下做什么动作能够拿到最大奖励,我们用Q函数来表示这个状态-动作值。
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
接下来就会介绍 Q函数。在经过多次尝试和那个熊打交道之后,人类就可以对熊的不同的状态去做出判断,我们可以用状态动作价值的来表达说在某个状态下,为什么动作 1 会比动作 2 好。因为动作1的价值比动作2要高。这个价值就叫 Q 函数。如果说这个 Q 表格是一张已经训练好的表格的话,那这一张表格就像是我们的一本生活手册。我们就知道在熊发怒的时候,装死的价值会高一点。在熊离开的时候,我们可能偷偷逃跑的会比较容易获救。这张表格里面 Q 函数的物理意义就是我选择了这个动作之后我最后面能不能成功,就是我需要去计算我在这个状态下,我选择了这个动作,后续能够一共拿到多少总收益。如果我可以预估未来的总收益的大小,我们当然知道在当前的这个状态下选择哪个动作,价值更高。我选择某个动作是因为我未来一共可以拿到的那个价值会更高一点。所以强化学习它的目标导向性很强,环境给了这个 reward 是一个非常重要的反馈,它就是根据环境的 reward 的反馈来去做选择。
|
||||
接下来就会介绍 Q 函数。在经过多次尝试和那个熊打交道之后,人类就可以对熊的不同的状态去做出判断,我们可以用状态动作价值的来表达说在某个状态下,为什么动作 1 会比动作 2 好。因为动作 1 的价值比动作 2 要高。这个价值就叫 Q 函数。如果说这个 Q 表格是一张已经训练好的表格的话,那这一张表格就像是我们的一本生活手册。我们就知道在熊发怒的时候,装死的价值会高一点。在熊离开的时候,我们可能偷偷逃跑的会比较容易获救。这张表格里面 Q 函数的物理意义就是我选择了这个动作之后我最后面能不能成功,就是我需要去计算我在这个状态下,我选择了这个动作,后续能够一共拿到多少总收益。如果我可以预估未来的总收益的大小,我们当然知道在当前的这个状态下选择哪个动作,价值更高。我选择某个动作是因为我未来一共可以拿到的那个价值会更高一点。所以强化学习它的目标导向性很强,环境给了这个 reward 是一个非常重要的反馈,它就是根据环境的 reward 的反馈来去做选择。
|
||||
|
||||
未来的总收益是一个什么样的概念,为什么可以用这个来评价当前这个动作是好是坏。举个例子,假设说一辆车在路上,当前是红灯,我们直接走的那个收益就很低,因为违反交通规则,这是就是当前的单步收益。可是如果我们这是一辆救护车,我们正在运送病人,把病人快速送达医院的收益非常的高,而且越快你的收益越大。很可能是我们这个时候应该要闯红灯,因为未来的远期收益太高了。这也是为什么说强化学习需要去学习远期的收益,因为现实世界当中这个奖励往往是延迟的,是有delay 的。
|
||||
|
||||
@@ -87,7 +89,7 @@ $$
|
||||
|
||||

|
||||
|
||||
这种单步更新的方法是我们在强化学习里面会接触到的叫`时序差分`的更新方法。为了让大家更好理解强化学习里面时序差分的这种更新方法。我这里就找了一下它的的物理意义。我们先理解一下巴普洛夫的条件反射实验了。这个实验讲的是什么呢?就是小狗对盆里面的食物,它会产生无条件刺激分泌唾液。一开始小狗对于铃声这种中性刺激是没有反应的。可是我们把这个铃声和这个食物结合起来,每次先给它响一下铃,再给它喂食物。多次重复之后,当铃声响起的时候,小狗也会开始流口水。盆里的肉可以认为是强化学习里面最后面的那个延迟的那个 reward。声音的刺激可以认为是有 reward 的那个状态之前的一个状态。多次重复实验之后,最后的这个 reward 会强化小狗对于这个声音的条件反射,它会让小狗知道说这个声音代表着有食物,这个声音对于小狗来说也就有了价值,它听到这个声音也会也会流口水。
|
||||
这种单步更新的方法叫做`时序差分`的更新方法。为了让大家更好理解强化学习里面时序差分的这种更新方法。我这里就找了一下它的的物理意义。我们先理解一下巴普洛夫的条件反射实验了。这个实验讲的是什么呢?就是小狗对盆里面的食物,它会产生无条件刺激分泌唾液。一开始小狗对于铃声这种中性刺激是没有反应的。可是我们把这个铃声和这个食物结合起来,每次先给它响一下铃,再给它喂食物。多次重复之后,当铃声响起的时候,小狗也会开始流口水。盆里的肉可以认为是强化学习里面最后面的那个延迟的那个 reward。声音的刺激可以认为是有 reward 的那个状态之前的一个状态。多次重复实验之后,最后的这个 reward 会强化小狗对于这个声音的条件反射,它会让小狗知道说这个声音代表着有食物,这个声音对于小狗来说也就有了价值,它听到这个声音也会也会流口水。
|
||||
|
||||

|
||||
|
||||
@@ -97,16 +99,12 @@ $$
|
||||
|
||||

|
||||
|
||||
为了让大家更加直观感受一下这个下一个状态影响上一个状态效果,这里推荐那个斯坦福大学的一个网站[Temporal Difference Learning Gridworld Demo](https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html)。这个网站模拟了就是这种单步更新的过程中,所有格子的一个状态价值的变化过程。我们可以看到格子里面有几个 -1的 reward。只有一个 +1 reward 的那个格子。
|
||||
为了让大家更加直观感受下一个状态影响上一个状态效果,这里推荐那个斯坦福大学的一个网站:[Temporal Difference Learning Gridworld Demo](https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html)。这个网站模拟了就是这种单步更新的过程中,所有格子的一个状态价值的变化过程。我们可以看到格子里面有几个 -1的 reward。只有一个 +1 reward 的那个格子。
|
||||
|
||||

|
||||
|
||||
玩起来是这样的,先初始化一下,然后开始时序差分的更新过程,训练的过程你会看到这个小黄球不断的在试错。但探索当中会先迅速地发现有 reward的地方。最开始的时候,只是这些有 reward 的格子 才有价值,当不断的重复走这些路线的时候,这些有价值的格子,它可以去慢慢的影响它附近的格子的价值。反复训练之后,有 reward 的这些格子周围的格子的状态就会慢慢的被强化,然后强化就是当它收敛到最后一个最优的状态了,就是把这些价值最终收敛到一个最优的情况之后,那个小黄球就会自动地知道,就是我一直往价值高的地方走,我就能够走到能够拿到 reward 的地方。
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
这种强化方式其实在数学上面一行公式就表达出来了。我们也喊说这种更新的方式叫做时序差分的一个更新的方式。这个公式它想要表达就是我可以拿下一步的Q 值 $Q(S_{t+_1},A_{t+1})$ 来更新我这一步的 Q 值 $Q(S_t,A_t)$ 。
|
||||
@@ -121,19 +119,15 @@ $$
|
||||
|
||||
也就是说,我们拿 $Q(S_t,A_t)$ 来逼近这个 $G_t$ , 那 $Q(S_{t+1},A_{t+1})$ 其实就是近似这个 $G_{t+1}$ ,那我们可以把 $G_{t+1}$ 放到这个目标值这里。$Q(S_t,A_t)$ 就是要逼近这个目标值,怎么去逼近了。我们用软更新的方式。
|
||||
|
||||
软更新的方式就是 $\alpha$ ,每次我只更新一点点。这个 $\alpha$ 有点类似于像学习率一样的东西。最终的话,Q 值都是可以慢慢地逼近到真实的 target 值的。这样我们的更新公式只需要用到当前时刻的 $S_{t},A_t$ ,然后还有拿到的 $R_{t+1}, S_{t+1},A_{t+1}$ 。
|
||||
软更新的方式就是 $\alpha$ ,每次我只更新一点点。这个 $\alpha$ 有点类似于像学习率一样的东西。最终的话,Q 值都是可以慢慢地逼近到真实的 target 值的。这样我们的更新公式只需要用到当前时刻的 $S_{t},A_t$ ,然后还有拿到的 $R_{t+1}, S_{t+1},A_{t+1}$ 。
|
||||
|
||||
我们只需要这几个值,就是$(S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1})$ ,这就是 Sarsa 算法。它的命名其实就是因为它用到的就是这几个值。因为它走了一步之后,它拿到了 $(S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1})$ 之后,它就可以做一次这样子的更新。
|
||||
|
||||

|
||||
|
||||
然后知关于就是用那个巴甫洛夫效应来去理解的公式的,也是在强化学习那本书名第14章有提到过了。大家感兴趣可以再去读一读,了解一下。
|
||||
|
||||
我们看看用代码去怎么去实现。了解单步更新的一个基本公式之后,代码实现就很简单了。这个是环境,这个是 agent 。我们每次跟环境交互一次之后呢,就可以 learn 一下。我们向环境输出 action,
|
||||
|
||||
然后从环境当中拿到那 state 和 reward。Agent 主要实现两个方法,一个就是根据 Q 表格去选择动作,输出action。另外一个就是拿到 $(S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1})$ 这几个值去更新我们的 Q 表格。
|
||||
|
||||
|
||||
然后从环境当中拿到那 state 和 reward。Agent 主要实现两个方法,一个就是根据 Q 表格去选择动作,输出 action。另外一个就是拿到 $(S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1})$ 这几个值去更新我们的 Q 表格。
|
||||
|
||||
我们直接看这个框框里面的更新公式, 和之前的公式是一模一样的。$S'$ 就是 $S_{t+1}$ 。我们就是拿下一步的 Q 值来更新这一步的 Q 值,不断地强化每一个 Q。
|
||||
|
||||
@@ -143,13 +137,24 @@ $$
|
||||
|
||||
Sarsa 是一种 on-policy 策略。Sarsa 优化的是它实际执行的策略。它直接拿下一步,我一定会执行的 action 来去优化我的 Q 表格,所以 on-policy 在学习的过程中,只存在一种策略,它用一种策略去做 action 的选取,也用一种策略去做优化。所以 Sarsa 知道它下一步的动作有可能会跑到悬崖那边去,所以它就会在优化它自己的策略的时候,它会尽可能的离悬崖远一点哦。那这样子就会保证说,它下一步哪怕是有随机动作,它也还是在安全区域内。
|
||||
|
||||
而 off-policy 在学习的过程中,保留了两种不同的策略。第一个策略是我们希望学到一个最佳的目标策略,另外一个策略是探索环境的策略。它可以大胆地去探索到所有可能的轨迹,然后喂给这个目标策略去学习。而且喂给目标策略的数据中并不需要 $a_{t+1}$ 。注意,Sarsa 是有 $a_{t+1}$ 的。它喂给目标策略的数据不需要 $a_{t+1}$,比如说目标策略优化时候,它才不管你下一步去往哪里探索,会不会掉悬崖,我就只选我收益最大一个最优的策略。探索环境的策略,我们叫做 `behavior policy`,它像是一个天不怕地不怕的一个前线的战士,可以在环境里面探索所有的动作和轨迹和经验。然后把这些经验的交给目标策略去学习。目标策略就像是在后方指挥战术的一个军师,它可以根据自己的经验来学习最优的策略,它不需要去和环境交互。
|
||||
而 off-policy 在学习的过程中,保留了两种不同的策略。第一个策略是我们希望学到一个最佳的目标策略,另外一个策略是探索环境的策略。它可以大胆地去探索到所有可能的轨迹,然后喂给这个目标策略去学习。而且喂给目标策略的数据中并不需要 $a_{t+1}$ 。注意,Sarsa 是有 $a_{t+1}$ 的。它喂给目标策略的数据不需要 $a_{t+1}$,比如说目标策略优化时候,它才不管你下一步去往哪里探索,会不会掉悬崖,我就只选我收益最大一个最优的策略。探索环境的策略,我们叫做 `behavior policy`,它像是一个战士,可以在环境里面探索所有的动作和轨迹和经验。然后把这些经验的交给目标策略去学习。目标策略就像是在后方指挥战术的一个军师,它可以根据自己的经验来学习最优的策略,它不需要去和环境交互。
|
||||
|
||||

|
||||
|
||||
Q-learning 是 off-policy 的,Sarsa 是 on-policy 的。 我们通过对比的方式来去理解 Q-learning。Sarsa 在更新 Q 表格的时候,它用到的 A' 。我要获取下一个 Q 值的时候,我用到了的 A' 是下一个 step 一定会执行的 action 。这个也 action 有可能是 $\varepsilon$-greddy 方法 sample 出来的值,也有可能是 max Q 对应的 action,也有可能是随机动作。但是就是它实实在在执行了的那个动作。
|
||||
我们通过对比的方式来去理解 `Q-learning`。Q-learning 是 off-policy 的时序差分学习方法,Sarsa 是 on-policy 的时序差分学习方法。
|
||||
|
||||
* Sarsa 在更新 Q 表格的时候,它用到的 A' 。我要获取下一个 Q 值的时候,A' 是下一个 step 一定会执行的 action 。这个 action 有可能是 $\varepsilon$-greddy 方法 sample 出来的值,也有可能是 max Q 对应的 action,也有可能是随机动作。但是就是它实实在在执行了的那个动作。
|
||||
|
||||
* 但是 Q-learning 在更新 Q 表格的时候,它用到这个的 Q 值 $Q(S',a')$ 对应的那个 action ,它不一定是下一个 step 会执行的实际的 action,因为你下一个实际会执行的那个 action 可能会探索。Q-learning 默认的 action 不是通过 behavior policy 来选取的,它是默认 A' 为最优策略选的动作,所以 Q-learning 在学习的时候,不需要传入 A',即 $a_{t+1}$ 的值。
|
||||
|
||||
在Q-learning 中,Q函数的估计方法为
|
||||
$$
|
||||
Q(s, a) \leftarrow Q(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)
|
||||
$$
|
||||
相当于让 $Q(s,a)$ 直接去估计最优状态值函数 $Q^*(s,a)$。
|
||||
|
||||
> 事实上,Q-learning 算法被提出的时间更早,Sarsa 算法是 Q-learning 算法的改进。
|
||||
|
||||
但是 Q-learning 在更新 Q 表格的时候,它用到这个的 Q 值 $Q(S',a')$ 对应的那个 action ,它不一定是下一个 step 会执行的实际的 action,因为你下一个实际会执行的那个 action 可能会探索。Q-learning 默认的 action 不是通过 behavior policy 来选取的,它是默认 A' 为最优策略选的动作,所以 Q-learning 在学习的时候,不需要传入A',即 $a_{t+1}$ 的值。
|
||||
|
||||

|
||||
|
||||
@@ -159,7 +164,52 @@ Sarsa 实际上都是用自己的策略产生了 S,A,R,S',A' 这一条轨迹。
|
||||
|
||||
然后Q-learning 的这个逐步的一个拆解的话,跟Sarsa 唯一一点不一样就是我并不需要提前知道我 $A_2$ ,我就能更新 $Q(S_1,A_1)$ 。在训练一个 episode 这个流程图当中,Q-leanring 在 learn 之前它也不需要去拿到 next action A',它只需要前面四个 $(S,A,R,S')$也就可以了。这一点就是跟 Sarsa 有一个很明显的区别。
|
||||
|
||||
初始状态为$s$并进行动作 $a$,然后执行策略 $\pi$ 得到的期望总回报,称为`状态-动作值函数(State-Action Value Function)`:
|
||||
$$
|
||||
Q^{\pi}(s, a)=\mathbb{E}_{s^{\prime} \sim p\left(s^{\prime} | s, a\right)}\left[r\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \qquad(1)
|
||||
$$
|
||||
|
||||
状态-动作值函数也经常称为`Q 函数(Q-Function)`。
|
||||
|
||||
状态值函数$V^{\pi}(s)$ 是 Q-Function $Q^{\pi}(s,a)$ 关于动作 $a$ 的期望,即
|
||||
$$
|
||||
V^{\pi}(s)=\mathbb{E}_{a \sim \pi(a | s)}\left[Q^{\pi}(s, a)\right] \qquad(2)
|
||||
$$
|
||||
|
||||
结合公式(1) 和公式(2),Q-Function可以写为
|
||||
$$
|
||||
Q^{\pi}(s, a)=\mathbb{E}_{s^{\prime} \sim p\left(s^{\prime} | s, a\right)}\left[r\left(s, a, s^{\prime}\right)+\gamma \mathbb{E}_{a^{\prime} \sim \pi\left(a^{\prime} | s^{\prime}\right)}\left[Q^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]\right]
|
||||
$$
|
||||
这是关于 Q-Function 的 Bellman Equation。
|
||||
|
||||
### Bellman Equation
|
||||
|
||||
记策略 $\pi $ 的动作价值函数为 $Q^{\pi}(s_t,a_t)$,它表示在状态 $s_t$ 下,执行动作 $a_t$ 会带来的累积奖励 $G_t$ 的期望,具体公式为:
|
||||
$$
|
||||
\begin{aligned} Q ^ { \pi } \left( s _ { t } , a _ { t } \right) & = \mathbb { E } \left[ G _ { t } \mid s _ { t } , a _ { t } \right] \\ & = \mathbb { E } \left[ r _ { t } + \gamma r _ { t + 1 } + \gamma ^ { 2 } r _ { t + 2 } + \cdots \mid s _ { t } , a _ { t } \right] \\ & = \mathbb { E } \left[ r _ { t } + \gamma \left( r _ { t + 1 } + \gamma r _ { t + 2 } + \cdots \right) \mid s _ { t } , a _ { t } \right] \\ & = \mathbb { E } \left[ r _ { t } + \gamma Q ^ { \pi } \left( s _ { t + 1 } , a _ { t + 1 } \right) \mid s _ { t } , a _ { t } \right] \end{aligned}
|
||||
$$
|
||||
上式是马尔可夫决策过程中 Bellman 方程的基本形式。累积奖励 $G_t$ 的计算,不仅考虑当下 $t$ 时刻的动作 $a_t$ 的奖励 $r_t$,还会累积计算对之后決策带来的影响(公式中的 $\gamma$ 是后续奖励的衰减因子)。从上式可以看出,当前状态的动作价值 $Q^{\pi}(s_t,a_t)$ ,与当前动作的奖励 $r_t$ 以及下一状态的动作价值 $Q^{\pi}(s_{t+1},a_{t+1})$ 有关,因此,动作价值函数的计算可以通过动态规划算法来实现。
|
||||
|
||||
从另一方面考虑,在计算 $t$ 时刻的动作价值 $Q^{\pi}(s_t,a_t)$ 时,需要知道在 $t$、$t+1$、$t+2 \cdots \cdots$ 时刻的奖励,这样就不仅需要知道某一状态的所有可能出现的后续状态以及对应的奖励值,还要进行全宽度的回溯来更新状态的价值。这种方法无法在状态转移函数未知或者大规模问题中使用。因此,Q- learning 采用了浅层的时序差分采样学习,在计算累积奖励时,基于当前策略 $\pi$ 预测接下来发生的 $n$ 步动作($n$ 可以取 1 到 $+\infty$)并计算其奖励值。
|
||||
|
||||
具体来说,假设在状态 $s_t$ 下选择了动作 $a_t$,并得到了奖励 $r_t$ ,此时状态转移到 $s_{t+1}$,如果在此状态下根据同样的策略选择了动作 $a_{t+1}$ ,则 $Q^{\pi}(s_t,a_t)$ 可以表示为
|
||||
$$
|
||||
Q^{\pi}\left(s_{t}, a_{t}\right)=\mathbb{E}_{s_{t+1}, a_{t+1}}\left[r_{t}+\gamma Q^{\pi}\left(s_{t+1}, a_{t+1}\right) \mid s_{t}, a_{t}\right]
|
||||
$$
|
||||
|
||||
Q-learning 算法在使用过程中,可以根据获得的累积奖励来选择策略,累积奖励的期望值越高,价值也就越大,智能体越倾向于选择这个动作。因此,最优策略 $\pi^*$ 对应的动作价值函数 $Q^*(s_t,a_t)$ 满足如下关系式:
|
||||
|
||||
$$
|
||||
Q^{*}\left(s_{t}, a_{t}\right)=\max _{\pi} Q^{\pi}\left(s_{t}, a_{t}\right)=\mathbb{E}_{s_{t+1}}\left[r_{t}+\gamma \max _{a_{t+1}} Q\left(s_{t+1}, a_{t+1}\right) \mid s_{t}, a_{t}\right]
|
||||
$$
|
||||
|
||||
Q-learning 算法在学习过程中会不断地更新 Q 值,但它并没有直接采用上式中的项进行更新,而是采用类似于梯度下降法的更新方式,即状态 $s_t$ 下的动作价值 $Q^*(s_t,a_t)$ 会朝着状态 $s_{t+1}$ 下的动作价值 $r_{t}+\gamma \max _{a_{t+1}} Q^{*}\left(s_{t+1}, a_{t+1}\right)$ 做一定比例的更新:
|
||||
$$
|
||||
\begin{aligned}
|
||||
Q^{*}\left(s_{t}, a_{t}\right) \leftarrow Q^{*}\left(s_{t}, a_{t}\right)+\alpha\left(r_{t}+\gamma \max _{a_{t+1}} Q^{*}\left(s_{t+1}, a_{t+1}\right)-Q^{*}\left(s_{t}, a_{t}\right)\right)
|
||||
\end{aligned}
|
||||
$$
|
||||
其中 $\alpha$ 是更新比例(学习速率)。这种渐进式的更新方式,可以减少策略估计造成的影响,并且最终会收敛至最优策略。
|
||||
|
||||

|
||||
|
||||
@@ -167,14 +217,16 @@ Sarsa 实际上都是用自己的策略产生了 S,A,R,S',A' 这一条轨迹。
|
||||
|
||||
Sarsa 就是一个典型的 on-policy 策略,它只用一个 $\pi$ ,为了兼顾探索和利用,所以它训练的时候会显得有一点点胆小怕事。它在解决悬崖问题的时候,会尽可能地离悬崖边上远远的,确保说哪怕自己不小心探索了一点了,也还是在安全区域内不不至于跳进悬崖。Q-leanring 是一个比较典型的 off-policy 的策略,它有目标策略 target policy,一般用 $\pi$ 来表示。然后还有行为策略 behavior policy,用 $\mu$ 来表示。它分离了目标策略跟行为策略。Q-learning 就可以大胆的用 behavior policy 去探索得到的经验轨迹来去优化我的目标策略。这样子我更有可能去探索到最优的策略。
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
总结如上图所示。
|
||||
|
||||
|
||||
|
||||
## References
|
||||
|
||||
* [百面深度学习](https://book.douban.com/subject/35043939/)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user