Merge branch 'master' of github.com:datawhalechina/easy-rl
This commit is contained in:
@@ -162,7 +162,7 @@ $$
|
||||
|
||||
> Law of total expectation 也被称为 law of iterated expectations(LIE)。如果 $A_i$ 是样本空间的有限或可数的划分(partition),则全期望公式可以写成如下形式:
|
||||
> $$
|
||||
> \mathrm{E}(X)=\sum_{i} \mathrm{E}\left(X \mid A_{i}\right) \mathrm{P}\left(A_{i}\right) \nonumber
|
||||
> \mathrm{E}(X)=\sum_{i} \mathrm{E}\left(X \mid A_{i}\right) \mathrm{P}\left(A_{i}\right)
|
||||
> $$
|
||||
|
||||
**证明:**
|
||||
|
||||
@@ -157,7 +157,7 @@ PPO 有一个前身叫做`信任区域策略优化(Trust Region Policy Optimizat
|
||||
$$
|
||||
\begin{aligned}
|
||||
J_{T R P O}^{\theta^{\prime}}(\theta)=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta^{\prime}}}\left[\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)} A^{\theta^{\prime}}\left(s_{t}, a_{t}\right)\right] \\ \\
|
||||
\mathrm{KL}\left(\theta, \theta^{\prime}\right)<\delta
|
||||
<div align = right> \mathrm{KL}\left(\theta, \theta^{\prime}\right)<\delta </div>
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
|
||||
Reference in New Issue
Block a user