diff --git a/codes/dqn/README.md b/codes/dqn/README.md deleted file mode 100644 index a8e141b..0000000 --- a/codes/dqn/README.md +++ /dev/null @@ -1,35 +0,0 @@ -## 思路 - -见[我的博客](https://blog.csdn.net/JohnJim0/article/details/109557173) -## 环境 - -python 3.7.9 - -pytorch 1.6.0 - -tensorboard 2.3.0 - -torchvision 0.7.0 - -## 使用 - -train: - -```python -python main.py -``` - -eval: - -```python -python main.py --train 0 -``` -可视化: -```python -tensorboard --logdir logs -``` - -## Torch知识 - -[with torch.no_grad()](https://www.jianshu.com/p/1cea017f5d11) - diff --git a/codes/dqn/agent.py b/codes/dqn/agent.py deleted file mode 100644 index 1ad82df..0000000 --- a/codes/dqn/agent.py +++ /dev/null @@ -1,128 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -''' -@Author: John -@Email: johnjim0816@gmail.com -@Date: 2020-06-12 00:50:49 -@LastEditor: John -LastEditTime: 2020-11-22 11:12:30 -@Discription: -@Environment: python 3.7.7 -''' -'''off-policy -''' - - -import torch -import torch.nn as nn -import torch.optim as optim -import torch.nn.functional as F -import random -import math -import numpy as np -from memory import ReplayBuffer -from model import FCN -class DQN: - def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01, batch_size=128, device="cpu"): - - self.n_actions = n_actions # 总的动作个数 - self.device = device # 设备,cpu或gpu等 - self.gamma = gamma # 奖励的折扣因子 - # e-greedy策略相关参数 - self.actions_count = 0 # 用于epsilon的衰减计数 - self.epsilon = 0 - self.epsilon_start = epsilon_start - self.epsilon_end = epsilon_end - self.epsilon_decay = epsilon_decay - self.batch_size = batch_size - self.policy_net = FCN(n_states, n_actions).to(self.device) - self.target_net = FCN(n_states, n_actions).to(self.device) - # target_net的初始模型参数完全复制policy_net - self.target_net.load_state_dict(self.policy_net.state_dict()) - self.target_net.eval() # 不启用 BatchNormalization 和 Dropout - # 可查parameters()与state_dict()的区别,前者require_grad=True - self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) - self.loss = 0 - self.memory = ReplayBuffer(memory_capacity) - - def choose_action(self, state, train=True): - '''选择动作 - ''' - if train: - self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ - math.exp(-1. * self.actions_count / self.epsilon_decay) - self.actions_count += 1 - if random.random() > self.epsilon: - with torch.no_grad(): - # 先转为张量便于丢给神经网络,state元素数据原本为float64 - # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 - state = torch.tensor( - [state], device=self.device, dtype=torch.float32) - # 如tensor([[-0.0798, -0.0079]], grad_fn=) - q_value = self.policy_net(state) - # tensor.max(1)返回每行的最大值以及对应的下标, - # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) - # 所以tensor.max(1)[1]返回最大值对应的下标,即action - action = q_value.max(1)[1].item() - else: - action = random.randrange(self.n_actions) - return action - else: - with torch.no_grad(): # 取消保存梯度 - # 先转为张量便于丢给神经网络,state元素数据原本为float64 - # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 - state = torch.tensor( - [state], device='cpu', dtype=torch.float32) # 如tensor([[-0.0798, -0.0079]], grad_fn=) - q_value = self.target_net(state) - # tensor.max(1)返回每行的最大值以及对应的下标, - # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) - # 所以tensor.max(1)[1]返回最大值对应的下标,即action - action = q_value.max(1)[1].item() - return action - def update(self): - - if len(self.memory) < self.batch_size: - return - # 从memory中随机采样transition - state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( - self.batch_size) - '''转为张量 - 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])''' - state_batch = torch.tensor( - state_batch, device=self.device, dtype=torch.float) - action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( - 1) # 例如tensor([[1],...,[0]]) - reward_batch = torch.tensor( - reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1]) - next_state_batch = torch.tensor( - next_state_batch, device=self.device, dtype=torch.float) - done_batch = torch.tensor(np.float32( - done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 - - '''计算当前(s_t,a)对应的Q(s_t, a)''' - '''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])''' - q_values = self.policy_net(state_batch).gather( - dim=1, index=action_batch) # 等价于self.forward - # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states - next_state_values = self.target_net( - next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,]) - # 计算 expected_q_value - # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward - expected_q_values = reward_batch + self.gamma * \ - next_state_values * (1-done_batch[0]) - # self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss - self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss - # 优化模型 - self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step - # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分 - self.loss.backward() - for param in self.policy_net.parameters(): # clip防止梯度爆炸 - param.grad.data.clamp_(-1, 1) - - self.optimizer.step() # 更新模型 - - def save_model(self,path): - torch.save(self.target_net.state_dict(), path) - - def load_model(self,path): - self.target_net.load_state_dict(torch.load(path)) diff --git a/codes/dqn/logs/eval/20201015-215937/events.out.tfevents.1602770409.MacBook-Pro.local.21607.3 b/codes/dqn/logs/eval/20201015-215937/events.out.tfevents.1602770409.MacBook-Pro.local.21607.3 deleted file mode 100644 index 8ceddf5..0000000 Binary files a/codes/dqn/logs/eval/20201015-215937/events.out.tfevents.1602770409.MacBook-Pro.local.21607.3 and /dev/null differ diff --git a/codes/dqn/logs/eval/20201015-215937/rewards_moving_average/events.out.tfevents.1602770409.MacBook-Pro.local.21607.5 b/codes/dqn/logs/eval/20201015-215937/rewards_moving_average/events.out.tfevents.1602770409.MacBook-Pro.local.21607.5 deleted file mode 100644 index aada812..0000000 Binary files a/codes/dqn/logs/eval/20201015-215937/rewards_moving_average/events.out.tfevents.1602770409.MacBook-Pro.local.21607.5 and /dev/null differ diff --git a/codes/dqn/logs/eval/20201015-215937/rewards_raw/events.out.tfevents.1602770409.MacBook-Pro.local.21607.4 b/codes/dqn/logs/eval/20201015-215937/rewards_raw/events.out.tfevents.1602770409.MacBook-Pro.local.21607.4 deleted file mode 100644 index ae17517..0000000 Binary files a/codes/dqn/logs/eval/20201015-215937/rewards_raw/events.out.tfevents.1602770409.MacBook-Pro.local.21607.4 and /dev/null differ diff --git a/codes/dqn/logs/train/20201015-215937/events.out.tfevents.1602770377.MacBook-Pro.local.21607.0 b/codes/dqn/logs/train/20201015-215937/events.out.tfevents.1602770377.MacBook-Pro.local.21607.0 deleted file mode 100644 index 9a4f3f5..0000000 Binary files a/codes/dqn/logs/train/20201015-215937/events.out.tfevents.1602770377.MacBook-Pro.local.21607.0 and /dev/null differ diff --git a/codes/dqn/logs/train/20201015-215937/rewards_moving_average/events.out.tfevents.1602770377.MacBook-Pro.local.21607.2 b/codes/dqn/logs/train/20201015-215937/rewards_moving_average/events.out.tfevents.1602770377.MacBook-Pro.local.21607.2 deleted file mode 100644 index 8eed693..0000000 Binary files a/codes/dqn/logs/train/20201015-215937/rewards_moving_average/events.out.tfevents.1602770377.MacBook-Pro.local.21607.2 and /dev/null differ diff --git a/codes/dqn/logs/train/20201015-215937/rewards_raw/events.out.tfevents.1602770377.MacBook-Pro.local.21607.1 b/codes/dqn/logs/train/20201015-215937/rewards_raw/events.out.tfevents.1602770377.MacBook-Pro.local.21607.1 deleted file mode 100644 index 4322bc3..0000000 Binary files a/codes/dqn/logs/train/20201015-215937/rewards_raw/events.out.tfevents.1602770377.MacBook-Pro.local.21607.1 and /dev/null differ diff --git a/codes/dqn/main.py b/codes/dqn/main.py deleted file mode 100644 index b024320..0000000 --- a/codes/dqn/main.py +++ /dev/null @@ -1,153 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -''' -@Author: John -@Email: johnjim0816@gmail.com -@Date: 2020-06-12 00:48:57 -@LastEditor: John -LastEditTime: 2021-01-05 09:41:02 -@Discription: -@Environment: python 3.7.7 -''' -import gym -import torch -from agent import DQN -import argparse -from torch.utils.tensorboard import SummaryWriter -import datetime -import os -from utils import save_results,save_model - -SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") -SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' -RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/' - -def get_args(): - '''模型参数 - ''' - parser = argparse.ArgumentParser() - parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval - parser.add_argument("--gamma", default=0.99, - type=float) # q-learning中的gamma - parser.add_argument("--epsilon_start", default=0.95, - type=float) # 基于贪心选择action对应的参数epsilon - parser.add_argument("--epsilon_end", default=0.01, type=float) - parser.add_argument("--epsilon_decay", default=500, type=float) - parser.add_argument("--policy_lr", default=0.01, type=float) - parser.add_argument("--memory_capacity", default=1000, - type=int, help="capacity of Replay Memory") - - parser.add_argument("--batch_size", default=32, type=int, - help="batch size of memory sampling") - parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目 - parser.add_argument("--train_steps", default=200, type=int) - parser.add_argument("--target_update", default=2, type=int, - help="when(every default 2 eisodes) to update target net ") # 更新频率 - - parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目 - parser.add_argument("--eval_steps", default=200, - type=int) # 训练每个episode的长度 - config = parser.parse_args() - - return config -def train(cfg): - print('Start to train ! \n') - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu - env = gym.make('CartPole-v0') - env.seed(1) # 设置env随机种子 - n_states = env.observation_space.shape[0] - n_actions = env.action_space.n - agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, - epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) - rewards = [] - moving_average_rewards = [] - ep_steps = [] - log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE - writer = SummaryWriter(log_dir) - for i_episode in range(1, cfg.train_eps+1): - state = env.reset() # reset环境状态 - ep_reward = 0 - for i_step in range(1, cfg.train_steps+1): - action = agent.choose_action(state) # 根据当前环境state选择action - next_state, reward, done, _ = env.step(action) # 更新环境参数 - ep_reward += reward - agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory - state = next_state # 跳转到下一个状态 - agent.update() # 每步更新网络 - if done: - break - # 更新target network,复制DQN中的所有weights and biases - if i_episode % cfg.target_update == 0: - agent.target_net.load_state_dict(agent.policy_net.state_dict()) - print('Episode:', i_episode, ' Reward: %i' % - int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon) - ep_steps.append(i_step) - rewards.append(ep_reward) - # 计算滑动窗口的reward - if i_episode == 1: - moving_average_rewards.append(ep_reward) - else: - moving_average_rewards.append( - 0.9*moving_average_rewards[-1]+0.1*ep_reward) - writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode) - writer.add_scalar('steps_of_each_episode', - ep_steps[-1], i_episode) - writer.close() - print('Complete training!') - ''' 保存模型 ''' - save_model(agent,model_path=SAVED_MODEL_PATH) - '''存储reward等相关结果''' - save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH) - - -def eval(cfg, saved_model_path = SAVED_MODEL_PATH): - print('start to eval ! \n') - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu - env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 - env.seed(1) # 设置env随机种子 - n_states = env.observation_space.shape[0] - n_actions = env.action_space.n - agent = DQN(n_states=n_states, n_actions=n_actions, device="cpu", gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, - epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) - agent.load_model(saved_model_path+'checkpoint.pth') - rewards = [] - moving_average_rewards = [] - ep_steps = [] - log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE - writer = SummaryWriter(log_dir) - for i_episode in range(1, cfg.eval_eps+1): - state = env.reset() # reset环境状态 - ep_reward = 0 - for i_step in range(1, cfg.eval_steps+1): - action = agent.choose_action(state,train=False) # 根据当前环境state选择action - next_state, reward, done, _ = env.step(action) # 更新环境参数 - ep_reward += reward - state = next_state # 跳转到下一个状态 - if done: - break - print('Episode:', i_episode, ' Reward: %i' % - int(ep_reward), 'n_steps:', i_step, 'done: ', done) - ep_steps.append(i_step) - rewards.append(ep_reward) - # 计算滑动窗口的reward - if i_episode == 1: - moving_average_rewards.append(ep_reward) - else: - moving_average_rewards.append( - 0.9*moving_average_rewards[-1]+0.1*ep_reward) - writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode) - writer.add_scalar('steps_of_each_episode', - ep_steps[-1], i_episode) - writer.close() - '''存储reward等相关结果''' - save_results(rewards,moving_average_rewards,ep_steps,tag='eval',result_path=RESULT_PATH) - print('Complete evaling!') - -if __name__ == "__main__": - cfg = get_args() - if cfg.train: - train(cfg) - eval(cfg) - else: - model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/" - eval(cfg,saved_model_path=model_path) diff --git a/codes/dqn/memory.py b/codes/dqn/memory.py deleted file mode 100644 index 657bfc0..0000000 --- a/codes/dqn/memory.py +++ /dev/null @@ -1,35 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -''' -@Author: John -@Email: johnjim0816@gmail.com -@Date: 2020-06-10 15:27:16 -@LastEditor: John -@LastEditTime: 2020-06-14 11:36:24 -@Discription: -@Environment: python 3.7.7 -''' -import random -import numpy as np - -class ReplayBuffer: - - def __init__(self, capacity): - self.capacity = capacity - self.buffer = [] - self.position = 0 - - def push(self, state, action, reward, next_state, done): - if len(self.buffer) < self.capacity: - self.buffer.append(None) - self.buffer[self.position] = (state, action, reward, next_state, done) - self.position = (self.position + 1) % self.capacity - - def sample(self, batch_size): - batch = random.sample(self.buffer, batch_size) - state, action, reward, next_state, done = zip(*batch) - return state, action, reward, next_state, done - - def __len__(self): - return len(self.buffer) - diff --git a/codes/dqn/model.py b/codes/dqn/model.py deleted file mode 100644 index a4642d8..0000000 --- a/codes/dqn/model.py +++ /dev/null @@ -1,30 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -''' -@Author: John -@Email: johnjim0816@gmail.com -@Date: 2020-06-12 00:47:02 -@LastEditor: John -LastEditTime: 2020-08-19 16:55:54 -@Discription: -@Environment: python 3.7.7 -''' -import torch.nn as nn -import torch.nn.functional as F - -class FCN(nn.Module): - def __init__(self, n_states=4, n_actions=18): - """ 初始化q网络,为全连接网络 - n_states: 输入的feature即环境的state数目 - n_actions: 输出的action总个数 - """ - super(FCN, self).__init__() - self.fc1 = nn.Linear(n_states, 128) # 输入层 - self.fc2 = nn.Linear(128, 128) # 隐藏层 - self.fc3 = nn.Linear(128, n_actions) # 输出层 - - def forward(self, x): - # 各层对应的激活函数 - x = F.relu(self.fc1(x)) - x = F.relu(self.fc2(x)) - return self.fc3(x) \ No newline at end of file diff --git a/codes/dqn/plot.py b/codes/dqn/plot.py deleted file mode 100644 index 59680c2..0000000 --- a/codes/dqn/plot.py +++ /dev/null @@ -1,46 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -''' -@Author: John -@Email: johnjim0816@gmail.com -@Date: 2020-06-11 16:30:09 -@LastEditor: John -LastEditTime: 2020-11-23 13:48:31 -@Discription: -@Environment: python 3.7.7 -''' -import matplotlib.pyplot as plt -import seaborn as sns -import numpy as np -import os - -def plot(item,ylabel='rewards_train', save_fig = True): - '''plot using searborn to plot - ''' - sns.set() - plt.figure() - plt.plot(np.arange(len(item)), item) - plt.title(ylabel+' of DQN') - plt.ylabel(ylabel) - plt.xlabel('episodes') - if save_fig: - plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") - plt.show() - -if __name__ == "__main__": - - output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/" - tag = 'train' - rewards=np.load(output_path+"rewards_"+tag+".npy", ) - moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",) - steps=np.load(output_path+"steps_"+tag+".npy") - plot(rewards) - plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag) - plot(steps,ylabel='steps_'+tag) - tag = 'eval' - rewards=np.load(output_path+"rewards_"+tag+".npy", ) - moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",) - steps=np.load(output_path+"steps_"+tag+".npy") - plot(rewards,ylabel='rewards_'+tag) - plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag) - plot(steps,ylabel='steps_'+tag) diff --git a/codes/dqn/result/20201015-215937/moving_average_rewards_eval.npy b/codes/dqn/result/20201015-215937/moving_average_rewards_eval.npy deleted file mode 100644 index 4d9dbaa..0000000 Binary files a/codes/dqn/result/20201015-215937/moving_average_rewards_eval.npy and /dev/null differ diff --git a/codes/dqn/result/20201015-215937/moving_average_rewards_train.npy b/codes/dqn/result/20201015-215937/moving_average_rewards_train.npy deleted file mode 100644 index 67c5579..0000000 Binary files a/codes/dqn/result/20201015-215937/moving_average_rewards_train.npy and /dev/null differ diff --git a/codes/dqn/result/20201015-215937/rewards_eval.npy b/codes/dqn/result/20201015-215937/rewards_eval.npy deleted file mode 100644 index b992efa..0000000 Binary files a/codes/dqn/result/20201015-215937/rewards_eval.npy and /dev/null differ diff --git a/codes/dqn/result/20201015-215937/rewards_train.npy b/codes/dqn/result/20201015-215937/rewards_train.npy deleted file mode 100644 index b4758a9..0000000 Binary files a/codes/dqn/result/20201015-215937/rewards_train.npy and /dev/null differ diff --git a/codes/dqn/result/20201015-215937/steps_eval.npy b/codes/dqn/result/20201015-215937/steps_eval.npy deleted file mode 100644 index d10f0eb..0000000 Binary files a/codes/dqn/result/20201015-215937/steps_eval.npy and /dev/null differ diff --git a/codes/dqn/result/20201015-215937/steps_train.npy b/codes/dqn/result/20201015-215937/steps_train.npy deleted file mode 100644 index ccc81c7..0000000 Binary files a/codes/dqn/result/20201015-215937/steps_train.npy and /dev/null differ diff --git a/codes/dqn/result/moving_average_rewards_eval.npy b/codes/dqn/result/moving_average_rewards_eval.npy deleted file mode 100644 index 4d9dbaa..0000000 Binary files a/codes/dqn/result/moving_average_rewards_eval.npy and /dev/null differ diff --git a/codes/dqn/result/moving_average_rewards_eval.png b/codes/dqn/result/moving_average_rewards_eval.png deleted file mode 100644 index c2ba80b..0000000 Binary files a/codes/dqn/result/moving_average_rewards_eval.png and /dev/null differ diff --git a/codes/dqn/result/moving_average_rewards_train.npy b/codes/dqn/result/moving_average_rewards_train.npy deleted file mode 100644 index 67c5579..0000000 Binary files a/codes/dqn/result/moving_average_rewards_train.npy and /dev/null differ diff --git a/codes/dqn/result/moving_average_rewards_train.png b/codes/dqn/result/moving_average_rewards_train.png deleted file mode 100644 index 34af087..0000000 Binary files a/codes/dqn/result/moving_average_rewards_train.png and /dev/null differ diff --git a/codes/dqn/result/rewards_eval.npy b/codes/dqn/result/rewards_eval.npy deleted file mode 100644 index b992efa..0000000 Binary files a/codes/dqn/result/rewards_eval.npy and /dev/null differ diff --git a/codes/dqn/result/rewards_eval.png b/codes/dqn/result/rewards_eval.png deleted file mode 100644 index 735fa2b..0000000 Binary files a/codes/dqn/result/rewards_eval.png and /dev/null differ diff --git a/codes/dqn/result/rewards_train.npy b/codes/dqn/result/rewards_train.npy deleted file mode 100644 index b4758a9..0000000 Binary files a/codes/dqn/result/rewards_train.npy and /dev/null differ diff --git a/codes/dqn/result/rewards_train.png b/codes/dqn/result/rewards_train.png deleted file mode 100644 index 471ecff..0000000 Binary files a/codes/dqn/result/rewards_train.png and /dev/null differ diff --git a/codes/dqn/result/steps_eval.npy b/codes/dqn/result/steps_eval.npy deleted file mode 100644 index d10f0eb..0000000 Binary files a/codes/dqn/result/steps_eval.npy and /dev/null differ diff --git a/codes/dqn/result/steps_eval.png b/codes/dqn/result/steps_eval.png deleted file mode 100644 index c3864ee..0000000 Binary files a/codes/dqn/result/steps_eval.png and /dev/null differ diff --git a/codes/dqn/result/steps_train.npy b/codes/dqn/result/steps_train.npy deleted file mode 100644 index ccc81c7..0000000 Binary files a/codes/dqn/result/steps_train.npy and /dev/null differ diff --git a/codes/dqn/result/steps_train.png b/codes/dqn/result/steps_train.png deleted file mode 100644 index 3ba5e60..0000000 Binary files a/codes/dqn/result/steps_train.png and /dev/null differ diff --git a/codes/dqn/saved_model/20201015-215937/checkpoint.pth b/codes/dqn/saved_model/20201015-215937/checkpoint.pth deleted file mode 100644 index de23719..0000000 Binary files a/codes/dqn/saved_model/20201015-215937/checkpoint.pth and /dev/null differ diff --git a/codes/dqn/saved_model/checkpoint.pth b/codes/dqn/saved_model/checkpoint.pth deleted file mode 100644 index de23719..0000000 Binary files a/codes/dqn/saved_model/checkpoint.pth and /dev/null differ diff --git a/codes/dqn/utils.py b/codes/dqn/utils.py deleted file mode 100644 index 9f8ca89..0000000 --- a/codes/dqn/utils.py +++ /dev/null @@ -1,30 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -''' -Author: John -Email: johnjim0816@gmail.com -Date: 2020-10-15 21:28:00 -LastEditor: John -LastEditTime: 2020-10-30 16:56:55 -Discription: -Environment: -''' -import os -import numpy as np - - -def save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path='./result'): - '''保存reward等结果 - ''' - if not os.path.exists(result_path): # 检测是否存在文件夹 - os.mkdir(result_path) - np.save(result_path+'rewards_'+tag+'.npy', rewards) - np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards) - np.save(result_path+'steps_'+tag+'.npy',ep_steps ) - print('results saved!') - -def save_model(agent,model_path='./saved_model'): - if not os.path.exists(model_path): # 检测是否存在文件夹 - os.mkdir(model_path) - agent.save_model(model_path+'checkpoint.pth') - print('model saved!') \ No newline at end of file