This commit is contained in:
johnjim0816
2022-06-18 20:30:58 +08:00
parent 4076b4f1ca
commit 88cb61c596
30 changed files with 68 additions and 823 deletions

View File

@@ -5,7 +5,7 @@ Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-12-22 11:14:17
LastEditor: JiangJi
LastEditTime: 2022-02-10 06:17:41
LastEditTime: 2022-06-18 20:12:20
Discription: 使用 Nature DQN 训练 CartPole-v1
'''
import sys
@@ -17,6 +17,9 @@ sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
import torch.nn as nn
import torch.nn.functional as F
from common.utils import save_results, make_dir
from common.utils import plot_rewards, plot_rewards_cn
from dqn import DQN
@@ -33,18 +36,18 @@ class DQNConfig:
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.test_eps = 30 # 测试的回合数
self.train_eps = 300 # 训练的回合数
self.test_eps = 20 # 测试的回合数
# 超参数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.gamma = 0.99 # 强化学习中的折扣因子
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
self.epsilon_end = 0.005 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.batch_size = 128 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
self.hidden_dim = 512 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
@@ -60,7 +63,23 @@ class PlotConfig:
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
def env_agent_config(cfg, seed=1):
''' 创建环境和智能体
'''
@@ -68,7 +87,8 @@ def env_agent_config(cfg, seed=1):
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
agent = DQN(n_states, n_actions, cfg) # 创建智能体
model = MLP(n_states,n_actions)
agent = DQN(n_actions,model,cfg) # 创建智能体
return env, agent
def train(cfg, env, agent):