This commit is contained in:
johnjim0816
2021-05-03 23:00:01 +08:00
parent 895094a893
commit 8028f7145e
67 changed files with 738 additions and 1137 deletions

View File

@@ -0,0 +1,84 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-04-29 17:01:43
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import datetime
from envs.gridworld_env import CliffWalkingWapper
from QLearning.agent import QLearning
from common.plot import plot_rewards
from common.utils import save_results
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class QlearningConfig:
'''训练相关参数'''
def __init__(self):
self.algo = 'Qlearning'
self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
self.train_eps = 300 # 训练的episode数目
self.eval_eps = 30
self.gamma = 0.9 # reward的衰减率
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
self.lr = 0.1 # learning rate
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env = CliffWalkingWapper(env)
env.seed(seed)
state_dim = env.observation_space.n
action_dim = env.action_space.n
agent = QLearning(state_dim,action_dim,cfg)
return env,agent
def eval(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
for i_ep in range(cfg.eval_eps):
ep_reward = 0 # 记录每个episode的reward
state = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.predict(state) # 根据算法选择一个动作
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
state = next_state # 存储上一个观察值
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
return rewards,ma_rewards
if __name__ == "__main__":
cfg = QlearningConfig()
env,agent = env_agent_config(cfg,seed=15)
cfg.model_path = './'+'QLearning/outputs/CliffWalking-v0/20210429-165825/models'+'/'
cfg.result_path = './'+'QLearning/outputs/CliffWalking-v0/20210429-165825/results'+'/'
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)