update
This commit is contained in:
84
codes/QLearning/task0_eval.py
Normal file
84
codes/QLearning/task0_eval.py
Normal file
@@ -0,0 +1,84 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 17:01:43
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import gym
|
||||
import datetime
|
||||
|
||||
from envs.gridworld_env import CliffWalkingWapper
|
||||
from QLearning.agent import QLearning
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.algo = 'Qlearning'
|
||||
self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
|
||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.eval_eps = 30
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # learning rate
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed)
|
||||
state_dim = env.observation_space.n
|
||||
action_dim = env.action_space.n
|
||||
agent = QLearning(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
state = next_state # 存储上一个观察值
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
env,agent = env_agent_config(cfg,seed=15)
|
||||
cfg.model_path = './'+'QLearning/outputs/CliffWalking-v0/20210429-165825/models'+'/'
|
||||
cfg.result_path = './'+'QLearning/outputs/CliffWalking-v0/20210429-165825/results'+'/'
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user