This commit is contained in:
johnjim0816
2021-05-03 23:00:01 +08:00
parent 895094a893
commit 8028f7145e
67 changed files with 738 additions and 1137 deletions

88
codes/QLearning/agent1.py Normal file
View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-04-29 17:02:00
Discription:
Environment:
'''
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import math
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-04-29 16:45:33
Discription: use np array to define Q table
Environment:
'''
import numpy as np
import math
class QLearning(object):
def __init__(self,
state_dim,action_dim,cfg):
self.action_dim = action_dim # dimension of acgtion
self.lr = cfg.lr # learning rate
self.gamma = cfg.gamma
self.epsilon = 0
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = np.zeros((state_dim, action_dim)) # Q表
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
if np.random.uniform(0, 1) > self.epsilon: # 随机选取0-1之间的值如果大于epsilon就按照贪心策略选取action否则随机选取
action = self.predict(state)
else:
action = np.random.choice(self.action_dim) #有一定概率随机探索选取一个动作
return action
def predict(self, state):
'''根据输入观测值,采样输出的动作值,带探索,测试模型时使用
'''
Q_list = self.Q_table[state, :]
Q_max = np.max(Q_list)
action_list = np.where(Q_list == Q_max)[0]
action = np.random.choice(action_list) # Q_max可能对应多个 action ,可以随机抽取一个
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[state, action]
if done:
Q_target = reward # 没有下一个状态了
else:
Q_target = reward + self.gamma * np.max(
self.Q_table[next_state, :]) # Q_table-learning
self.Q_table[state, action] += self.lr * (Q_target - Q_predict) # 修正q
def save(self,path):
np.save(path+"Q_table.npy", self.Q_table)
def load(self, path):
self.Q_table = np.load(path+"Q_table.npy")