update
This commit is contained in:
88
codes/QLearning/agent1.py
Normal file
88
codes/QLearning/agent1.py
Normal file
@@ -0,0 +1,88 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 17:02:00
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 16:45:33
|
||||
Discription: use np array to define Q table
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
class QLearning(object):
|
||||
def __init__(self,
|
||||
state_dim,action_dim,cfg):
|
||||
self.action_dim = action_dim # dimension of acgtion
|
||||
self.lr = cfg.lr # learning rate
|
||||
self.gamma = cfg.gamma
|
||||
self.epsilon = 0
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q_table = np.zeros((state_dim, action_dim)) # Q表
|
||||
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if np.random.uniform(0, 1) > self.epsilon: # 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = np.random.choice(self.action_dim) #有一定概率随机探索选取一个动作
|
||||
return action
|
||||
|
||||
def predict(self, state):
|
||||
'''根据输入观测值,采样输出的动作值,带探索,测试模型时使用
|
||||
'''
|
||||
Q_list = self.Q_table[state, :]
|
||||
Q_max = np.max(Q_list)
|
||||
action_list = np.where(Q_list == Q_max)[0]
|
||||
action = np.random.choice(action_list) # Q_max可能对应多个 action ,可以随机抽取一个
|
||||
return action
|
||||
|
||||
def update(self, state, action, reward, next_state, done):
|
||||
Q_predict = self.Q_table[state, action]
|
||||
if done:
|
||||
Q_target = reward # 没有下一个状态了
|
||||
else:
|
||||
Q_target = reward + self.gamma * np.max(
|
||||
self.Q_table[next_state, :]) # Q_table-learning
|
||||
self.Q_table[state, action] += self.lr * (Q_target - Q_predict) # 修正q
|
||||
def save(self,path):
|
||||
np.save(path+"Q_table.npy", self.Q_table)
|
||||
def load(self, path):
|
||||
self.Q_table = np.load(path+"Q_table.npy")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user