This commit is contained in:
johnjim0816
2021-05-03 23:00:01 +08:00
parent 895094a893
commit 8028f7145e
67 changed files with 738 additions and 1137 deletions

View File

@@ -5,8 +5,8 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-26 16:51:01
Discription:
LastEditTime: 2021-04-29 16:59:41
Discription: use defaultdict to define Q table
Environment:
'''
import numpy as np
@@ -15,7 +15,7 @@ import torch
from collections import defaultdict
class QLearning(object):
def __init__(self,
def __init__(self,state_dim,
action_dim,cfg):
self.action_dim = action_dim # dimension of acgtion
self.lr = cfg.lr # learning rate
@@ -26,17 +26,20 @@ class QLearning(object):
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # A nested dictionary that maps state -> (action -> action-value)
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
# e-greedy policy
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[str(state)])
action = self.predict(state)
else:
action = np.random.choice(self.action_dim)
return action
def predict(self,state):
action = np.argmax(self.Q_table[str(state)])
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[str(state)][action]
if done: