fix some typos
This commit is contained in:
@@ -24,26 +24,39 @@
|
||||
|
||||

|
||||
|
||||
**怎么衡量这个 state value function $V^{\pi}(s)$ 呢?**有两种不同的做法。
|
||||
**怎么衡量这个 state value function $V^{\pi}(s)$ 呢?**有两种不同的做法:MC based 的方法和 TD based 的方法。
|
||||
|
||||
一个是用` Monte-Carlo(MC) based` 的方法。MC based 的方法就是让 actor 去跟环境做互动,你要看 actor 好不好, 你就让 actor 去跟环境做互动,给 critic 看。然后,critic 就统计说,actor 如果看到 state $s_a$,接下来 accumulated reward 会有多大。如果它看到 state $s_b$,接下来accumulated reward 会有多大。但是实际上,你不可能把所有的 state 通通都扫过。如果你是玩 Atari 游戏的话,你的 state 是 image ,你没有办法把所有的 state 通通扫过。所以实际上我们的 $V^{\pi}(s)$ 是一个 network。对一个 network 来说,就算是 input state 是从来都没有看过的,它也可以想办法估测一个 value 的值。
|
||||
**一个是用` Monte-Carlo(MC) based` 的方法。**MC based 的方法就是让 actor 去跟环境做互动,你要看 actor 好不好, 你就让 actor 去跟环境做互动,给 critic 看。然后,critic 就统计说,
|
||||
|
||||
怎么训练这个 network 呢?因为如果在 state $s_a$,接下来的 accumulated reward 就是 $G_a$。也就是说,对这个 value function 来说,如果 input 是 state $s_a$,正确的 output 应该是 $G_a$。如果 input state $s_b$,正确的 output 应该是 value $G_b$。所以在 training 的时候, 它就是一个 `regression problem`。Network 的 output 就是一个 value,你希望在 input $s_a$ 的时候,output value 跟 $G_a$ 越近越好,input $s_b$ 的时候,output value 跟 $G_b$ 越近越好。接下来把 network train 下去,就结束了。这是第一个方法,MC based 的方法。
|
||||
* actor 如果看到 state $s_a$,接下来的 accumulated reward 会有多大。
|
||||
* 如果它看到 state $s_b$,接下来的 accumulated reward 会有多大。
|
||||
|
||||
但是实际上,你不可能把所有的 state 通通都扫过。如果你是玩 Atari 游戏的话,你的 state 是 image ,你没有办法把所有的 state 通通扫过。所以实际上我们的 $V^{\pi}(s)$ 是一个 network。对一个 network 来说,就算 input state 是从来都没有看过的,它也可以想办法估测一个 value 的值。
|
||||
|
||||
怎么训练这个 network 呢?因为如果在 state $s_a$,接下来的 accumulated reward 就是 $G_a$。也就是说,对这个 value function 来说,如果 input 是 state $s_a$,正确的 output 应该是 $G_a$。如果 input state $s_b$,正确的 output 应该是 value $G_b$。**所以在 training 的时候, 它就是一个 `regression problem`。**Network 的 output 就是一个 value,你希望在 input $s_a$ 的时候,output value 跟 $G_a$ 越近越好,input $s_b$ 的时候,output value 跟 $G_b$ 越近越好。接下来把 network train 下去,就结束了。这是第一个方法,MC based 的方法。
|
||||
|
||||

|
||||
|
||||
第二个方法是`Temporal-difference(时序差分)` 的方法, `即 TD based ` 的方法。在 MC based 的方法中,每次我们都要算 accumulated reward,也就是从某一个 state $s_a$ 一直玩到游戏结束的时候,得到的所有 reward 的总和。所以你要 apply MC based 的 approach,你必须至少把这个游戏玩到结束。但有些游戏非常的长,你要玩到游戏结束才能够 update network,花的时间太长了。因此我们会采用 TD based 的方法。TD based 的方法不需要把游戏玩到底,只要在游戏的某一个情况,某一个 state $s_t$ 的时候,采取 action $a_t$ 得到 reward $r_t$ ,跳到 state $s_{t+1}$,就可以 apply TD 的方法。
|
||||
**第二个方法是`Temporal-difference(时序差分)` 的方法, `即 TD based ` 的方法。**
|
||||
|
||||
在 MC based 的方法中,每次我们都要算 accumulated reward,也就是从某一个 state $s_a$ 一直玩到游戏结束的时候,得到的所有 reward 的总和。所以你要 apply MC based 的 approach,你必须至少把这个游戏玩到结束。但有些游戏非常长,你要玩到游戏结束才能够 update network,花的时间太长了,因此我们会采用 TD based 的方法。
|
||||
|
||||
TD based 的方法不需要把游戏玩到底,只要在游戏的某一个情况,某一个 state $s_t$ 的时候,采取 action $a_t$ 得到 reward $r_t$ ,跳到 state $s_{t+1}$,就可以 apply TD 的方法。
|
||||
|
||||
怎么 apply TD 的方法呢?这边是基于以下这个式子:
|
||||
$$
|
||||
V^{\pi}\left(s_{t}\right)=V^{\pi}\left(s_{t+1}\right)+r_{t}
|
||||
$$
|
||||
|
||||
假设我们现在用的是某一个 policy $\pi$,在 state $s_t$,它会采取 action $a_t$,给我们 reward $r_t$ ,接下来进入 $s_{t+1}$ 。state $s_{t+1}$ 的 value 跟 state $s_t$ 的 value,它们的中间差了一项 $r_t$。因为你把 $s_{t+1}$ 得到的 value 加上得到的 reward $r_t$ 就会等于 $s_t$ 得到的 value。有了这个式子以后,你在 training 的时候,你并不是直接去估测 V,而是希望你得到的结果 V 可以满足这个式子。也就是说你会是这样 train 的,你把 $s_t$ 丢到 network 里面,因为 $s_t$ 丢到 network 里面会得到 $V^{\pi}(s_t)$,把 $s_{t+1}$ 丢到你的 value network 里面会得到$V^{\pi}(s_{t+1})$,这个式子告诉我们,$V^{\pi}(s_t)$ 减 $V^{\pi}(s_{t+1})$ 的值应该是 $r_t$。然后希望它们两个相减的 loss 跟 $r_t$ 越接近,train 下去,update V 的参数,你就可以把 V function learn 出来。
|
||||
假设我们现在用的是某一个 policy $\pi$,在 state $s_t$,它会采取 action $a_t$,给我们 reward $r_t$ ,接下来进入 $s_{t+1}$ 。State $s_{t+1}$ 的 value 跟 state $s_t$ 的 value,它们的中间差了一项 $r_t$。因为你把 $s_{t+1}$ 得到的 value 加上得到的 reward $r_t$ 就会等于 $s_t$ 得到的 value。有了这个式子以后,你在 training 的时候,你并不是直接去估测 V,而是希望你得到的结果 V 可以满足这个式子。
|
||||
|
||||
也就是说你会是这样 train 的,你把 $s_t$ 丢到 network 里面,因为 $s_t$ 丢到 network 里面会得到 $V^{\pi}(s_t)$,把 $s_{t+1}$ 丢到你的 value network 里面会得到$V^{\pi}(s_{t+1})$,这个式子告诉我们,$V^{\pi}(s_t)$ 减 $V^{\pi}(s_{t+1})$ 的值应该是 $r_t$。然后希望它们两个相减的 loss 跟 $r_t$ 越接近,train 下去,update V 的参数,你就可以把 V function learn 出来。
|
||||
|
||||

|
||||
|
||||
MC 跟 TD 有什么样的差别呢?**MC 最大的问题就是 variance 很大**。因为我们在玩游戏的时候,它本身是有随机性的。所以你可以把 $G_a$ 看成一个 random variable。因为你每次同样走到 $s_a$ 的时候,最后你得到的 $G_a$ 其实是不一样的。你看到同样的 state $s_a$,最后玩到游戏结束的时候,因为游戏本身是有随机性的,玩游戏的 model 搞不好也有随机性,所以你每次得到的 $G_a$ 是不一样的,每一次得到 $G_a$ 的差别其实会很大。为什么它会很大呢?因为 $G_a$ 其实是很多个不同的 step 的 reward 的和。假设你每一个 step 都会得到一个 reward,$G_a$ 是从 state $s_a$ 开始,一直玩到游戏结束,每一个timestamp reward 的和。
|
||||
**MC 跟 TD 有什么样的差别呢?**
|
||||
|
||||
**MC 最大的问题就是 variance 很大。**因为我们在玩游戏的时候,它本身是有随机性的。所以你可以把 $G_a$ 看成一个 random variable。因为你每次同样走到 $s_a$ 的时候,最后你得到的 $G_a$ 其实是不一样的。你看到同样的 state $s_a$,最后玩到游戏结束的时候,因为游戏本身是有随机性的,玩游戏的 model 搞不好也有随机性,所以你每次得到的 $G_a$ 是不一样的,每一次得到 $G_a$ 的差别其实会很大。为什么它会很大呢?因为 $G_a$ 其实是很多个不同的 step 的 reward 的和。假设你每一个 step 都会得到一个 reward,$G_a$ 是从 state $s_a$ 开始,一直玩到游戏结束,每一个timestamp reward 的和。
|
||||
|
||||
举例来说,我在右上角就列一个式子是说,
|
||||
|
||||
@@ -60,47 +73,50 @@ Var 是指 variance。
|
||||
在这中间会有随机性的是 r。因为计算你在 $s_t$ 采取同一个 action,你得到的 reward 也不一定是一样的,所以 r 是一个 random variable。但这个 random variable 的 variance 会比 $G_a$ 还要小,因为 $G_a$ 是很多 r 合起来,这边只是某一个 r 而已。$G_a$ 的 variance 会比较大,r 的 variance 会比较小。但是这边你会遇到的**一个问题是你这个 V 不一定估得准**。假设你的这个 V 估得是不准的,那你 apply 这个式子 learn 出来的结果,其实也会是不准的。所以 MC 跟 TD 各有优劣。**今天其实 TD 的方法是比较常见的,MC 的方法其实是比较少用的。**
|
||||
|
||||

|
||||
上图是讲 TD 跟 MC 的差异。假设有某一个 critic,它去观察某一个 policy $\pi$ 跟环境互动的 8 个 episode 的结果。有一个actor $\pi$ 跟环境互动了8 次,得到了8 次玩游戏的结果。接下来这个 critic 去估测 state 的 value。
|
||||
**上图是讲 TD 跟 MC 的差异。**假设有某一个 critic,它去观察某一个 policy $\pi$ 跟环境互动的 8 个 episode 的结果。有一个actor $\pi$ 跟环境互动了8 次,得到了8 次玩游戏的结果。接下来这个 critic 去估测 state 的 value。
|
||||
|
||||
* 我们看看 $s_b$ 的 value 是多少。$s_b$ 这个state 在 8 场游戏里面都有经历过,其中有 6 场得到 reward 1,有两场得到 reward 0,所以如果你是要算期望值的话,就看到 state $s_b$ 以后得到的 reward,一直到游戏结束的时候得到的 accumulated reward 期望值是 3/4。
|
||||
* 但 $s_a$ 期望的 reward 到底应该是多少呢?这边其实有两个可能的答案:一个是 0,一个是 3/4。为什么有两个可能的答案呢?这取决于你用MC 还是TD。用 MC 跟用 TD 算出来的结果是不一样的。
|
||||
**我们先计算 $s_b$ 的 value。**$s_b$ 这个state 在 8 场游戏里面都有经历过,其中有 6 场得到 reward 1,有 2 场得到 reward 0。所以如果你是要算期望值的话,就算看到 state $s_b$ 以后得到的 reward,一直到游戏结束的时候得到的 accumulated reward 期望值是 3/4,计算过程如下式所示:
|
||||
$$
|
||||
\frac{6 \times 1 + 2 \times 0}{8}=\frac{6}{8}=\frac{3}{4}
|
||||
$$
|
||||
**但 $s_a$ 期望的 reward 到底应该是多少呢?**这边其实有两个可能的答案:一个是 0,一个是 3/4。为什么有两个可能的答案呢?这取决于你用MC 还是TD。用 MC 跟用 TD 算出来的结果是不一样的。
|
||||
|
||||
假如你用 MC 的话,你会发现这个 $s_a$ 就出现一次,看到 $s_a$ 这个 state,接下来 accumulated reward 就是 0。所以今天 $s_a$ expected reward 就是 0。
|
||||
假如你用 MC 的话,你会发现这个 $s_a$ 就出现一次,看到 $s_a$ 这个 state,接下来 accumulated reward 就是 0,所以 $s_a$ expected reward 就是 0。
|
||||
|
||||
但 TD 在计算的时候,它要 update 下面这个式子。
|
||||
$$
|
||||
V^{\pi}\left(s_{a}\right)=V^{\pi}\left(s_{b}\right)+r
|
||||
$$
|
||||
|
||||
因为我们在 state $s_a$ 得到 reward r=0 以后,跳到 state $s_b$。所以 state $s_b$ 的 reward 会等于 state $s_b$ 的 reward 加上在state $s_a$ 跳到 state $s_b$ 的时候可能得到的 reward r。而这个得到的 reward r 的值是 0,$s_b$ expected reward 是3/4,那$s_a$ 的reward 应该是 3/4。
|
||||
因为我们在 state $s_a$ 得到 reward r=0 以后,跳到 state $s_b$。所以 state $s_b$ 的 reward 会等于 state $s_b$ 的 reward 加上在state $s_a$ 跳到 state $s_b$ 的时候可能得到的 reward r。而这个得到的 reward r 的值是 0,$s_b$ expected reward 是3/4,那 $s_a$ 的 reward 应该是 3/4。
|
||||
|
||||
用 MC 跟 TD 估出来的结果,其实很有可能是不一样的。就算 critic 观察到一样的 training data,它最后估出来的结果。也不见得会是一样。那为什么会这样呢?你可能问说,那一个比较对呢?其实就都对。
|
||||
用 MC 跟 TD 估出来的结果很有可能是不一样的。就算 critic 观察到一样的 training data,它最后估出来的结果也不一定是一样的。为什么会这样呢?你可能问说,哪一个结果比较对呢?其实就都对。
|
||||
|
||||
因为在第一个 trajectory, $s_a$ 得到 reward 0 以后,再跳到 $s_b$ 也得到 reward 0。这边有两个可能。
|
||||
|
||||
* 一个可能是 $s_a$,它就是一个带 sign 的 state,所以只要看到 $s_a$ 以后,$s_b$ 就会拿不到 reward,有可能 $s_a$ 其实影响了 $s_b$。如果是用 MC 的算法的话,它会把 $s_a$ 影响 $s_b$ 这件事考虑进去。所以看到 $s_a$ 以后,接下来 $s_b$ 就得不到 reward,所以看到 $s_a$ 以后,期望的 reward 是 0。
|
||||
* 一个可能是: $s_a$ 是一个带 sign 的 state,所以只要看到 $s_a$ 以后,$s_b$ 就会拿不到 reward,$s_a$ 可能影响了 $s_b$。如果是用 MC 的算法的话,它会把 $s_a$ 影响 $s_b$ 这件事考虑进去。所以看到 $s_a$ 以后,接下来 $s_b$ 就得不到 reward,$s_b$ 期望的 reward 是 0。
|
||||
|
||||
* 另一个可能是,看到 $s_a$ 以后, $s_b$ 的 reward 是 0 这件事只是一个巧合,就并不是 $s_a$ 所造成,而是因为说 $s_b$ 有时候就是会得到 reward 0,这只是单纯运气的问题。其实平常 $s_b$ 会得到 reward 期望值是 3/4,跟 $s_a$ 是完全没有关系的。所以假设 $s_a$ 之后会跳到 $s_b$,那其实得到的 reward 按照 TD 来算应该是 3/4。
|
||||
* 另一个可能是:看到 $s_a$ 以后, $s_b$ 的 reward 是 0 这件事只是一个巧合,并不是 $s_a$ 所造成,而是因为说 $s_b$ 有时候就是会得到 reward 0,这只是单纯运气的问题。其实平常 $s_b$ 会得到 reward 期望值是 3/4,跟 $s_a$ 是完全没有关系的。所以假设 $s_a$ 之后会跳到 $s_b$,那其实得到的 reward 按照 TD 来算应该是 3/4。
|
||||
|
||||
所以不同的方法考虑了不同的假设,运算结果不同。
|
||||
**所以不同的方法考虑了不同的假设,运算结果不同。**
|
||||
|
||||
## State-action Value Function
|
||||
|
||||

|
||||
|
||||
还有另外一种critic,这种critic 叫做 `Q-function`。它又叫做`state-action value function`。
|
||||
还有另外一种 critic,这种 critic 叫做 `Q-function`。它又叫做`state-action value function`。
|
||||
|
||||
* state value function 的 input 是一个 state,它是根据 state 去计算出,看到这个state 以后的 expected accumulated reward 是多少。
|
||||
* state value function 的 input 是一个 state,它是根据 state 去计算出,看到这个 state 以后的 expected accumulated reward 是多少。
|
||||
* state-action value function 的 input 是一个 state 跟 action 的 pair,它的意思是说,在某一个 state 采取某一个action,假设我们都使用 actor $\pi$ ,得到的 accumulated reward 的期望值有多大。
|
||||
|
||||
Q-function 有一个需要注意的问题是,这个 actor $\pi$,在看到 state s 的时候,它采取的 action 不一定是 a。Q-function 假设在 state s 强制采取 action a。不管你现在考虑的这个 actor $\pi$, 它会不会采取 action a,这不重要。在state s 强制采取 action a。接下来都用 actor $\pi$ 继续玩下去,就只有在 state s,我们才强制一定要采取 action a,接下来就进入自动模式,让actor $\pi$ 继续玩下去,得到的 expected reward 才是 $Q^{\pi}(s,a)$ 。
|
||||
|
||||
Q-function 有两种写法:
|
||||
|
||||
* input 是 state 跟action,output 就是一个 scalar;
|
||||
* input 是 state 跟 action,output 就是一个 scalar;
|
||||
* input 是一个 state s,output 就是好几个 value。
|
||||
|
||||
假设 action 是 discrete 的,action 就只有3 个可能,往左往右或是开火。那这个 Q-function output 的3 个 values 就分别代表 a 是向左的时候的 Q value,a 是向右的时候的Q value,还有 a 是开火的时候的 Q value。
|
||||
假设 action 是 discrete 的,action 就只有3 个可能,往左往右或是开火。那这个 Q-function output 的 3 个 values 就分别代表 a 是向左的时候的 Q value,a 是向右的时候的 Q value,还有 a 是开火的时候的 Q value。
|
||||
|
||||
那你要注意的事情是,上图右边的 function 只有 discrete action 才能够使用。如果 action 是无法穷举的,你只能够用上图左边这个式子,不能够用右边这个式子。
|
||||
|
||||
@@ -108,7 +124,7 @@ Q-function 有两种写法:
|
||||
|
||||
上图是文献上的结果,你去 estimate Q-function 的话,看到的结果可能会像是这个样子。这是什么意思呢?它说假设我们有 3 个 actions,3 个 actions 就是原地不动、向上、向下。
|
||||
|
||||
* 假设是在第一个 state,不管是采取哪个 action,最后到游戏结束的时候,得到的 expected reward 其实都差不多。因为球在这个地方,就算是你向下,接下来你其实应该还来的急救,所以今天不管是采取哪一个action,就差不了太多。
|
||||
* 假设是在第一个 state,不管是采取哪个 action,最后到游戏结束的时候,得到的 expected reward 其实都差不多。因为球在这个地方,就算是你向下,接下来你其实应该还来的急救,所以今天不管是采取哪一个 action,就差不了太多。
|
||||
|
||||
* 假设在第二个 state,这个乒乓球它已经反弹到很接近边缘的地方,这个时候你采取向上,你才能得到 positive reward,才接的到球。如果你是站在原地不动或向下的话,接下来你都会 miss 掉这个球。你得到的 reward 就会是负的。
|
||||
|
||||
@@ -233,7 +249,7 @@ $$
|
||||
=r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)
|
||||
$$
|
||||
|
||||
所以你在 learn 的时候,你会说我们有 Q-function,input $s_t$, $a_t$ 得到的 value,跟 input $s_{t+1}$, $\pi (s_{t+1})$ 得到的 value 中间,我们希望它差了一个$r_t$, 这跟刚才讲的 TD 的概念是一样的。
|
||||
所以你在 learn 的时候,你会说我们有 Q-function,input $s_t$, $a_t$ 得到的 value,跟 input $s_{t+1}$, $\pi (s_{t+1})$ 得到的 value 中间,我们希望它差了一个 $r_t$, 这跟刚才讲的 TD 的概念是一样的。
|
||||
|
||||
但是实际上在 learn 的时候,你会发现这样的一个function 并不好 learn,因为假设这是一个 regression problem,$\mathrm{Q}^{\pi}\left(s_{t}, a_{t}\right) $ 是 network 的 output,$r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)$是 target,你会发现 target 是会动的。当然你要 implement 这样的 training,其实也没有问题,就是你在做 backpropagation 的时候, $Q^{\pi}$ 的参数会被 update,你会把两个 update 的结果加在一起。因为它们是同一个 model $Q^{\pi}$, 所以两个 update 的结果会加在一起。但这样会导致 training 变得不太稳定。因为假设你把 $\mathrm{Q}^{\pi}\left(s_{t}, a_{t}\right) $ 当作你model 的output, $r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)$ 当作 target 的话。你要去 fit 的 target 是一直在变的,这种一直在变的 target 的 training 是不太好 train 的。所以你会把其中一个 Q-network,通常是你会把右边这个 Q-network 固定住。也就是说你在 training 的时候,你只 update 左边这个 Q-network 的参数,而右边这个 Q-network 的参数会被固定住。因为右边的 Q-network 负责产生 target,所以叫做 `target network`。因为 target network 是固定的,所以你现在得到的 target $r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)$ 的值也是固定的。因为 target network 是固定的,我们只调左边 network 的参数,它就变成是一个 regression problem。我们希望 model 的 output 的值跟目标越接近越好,你会 minimize 它的 mean square error。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user