hot update Double DQN

This commit is contained in:
johnjim0816
2022-08-30 16:29:57 +08:00
parent 0b0f7e857d
commit 764ba63d40
26 changed files with 803 additions and 365 deletions

View File

@@ -0,0 +1,129 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2022-08-29 23:33:31
Discription:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
import datetime
import argparse
from common.utils import all_seed
from common.models import MLP
from common.memories import ReplayBufferQue
from DoubleDQN.double_dqn import DoubleDQN
from common.launcher import Launcher
from envs.register import register_env
class Main(Launcher):
def get_args(self):
''' hyperparameters
'''
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=4,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--seed',default=1,type=int,help="seed")
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
}
args = {**vars(args),**default_args} # type(dict)
return args
def env_agent_config(self,cfg):
''' create env and agent
'''
register_env(cfg['env_name'])
env = gym.make(cfg['env_name'])
if cfg['seed'] !=0: # set random seed
all_seed(env,seed=cfg["seed"])
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
print(f"n_states: {n_states}, n_actions: {n_actions}")
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
models = {'Qnet':MLP(n_states,n_actions,hidden_dim=cfg['hidden_dim'])}
memories = {'Memory':ReplayBufferQue(cfg['memory_capacity'])}
agent = DoubleDQN(models,memories,cfg)
return env,agent
def train(self,cfg,env,agent):
print("Start training!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = []
for i_ep in range(cfg["train_eps"]):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
action = agent.sample_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push((state, action, reward, next_state, done))
state = next_state
agent.update()
if done:
break
if i_ep % cfg['target_update'] == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
steps.append(ep_step)
rewards.append(ep_reward)
if (i_ep+1)%10 == 0:
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
print("Finish training!")
env.close()
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
return res_dic
def test(self,cfg,env,agent):
print("Start testing!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = []
for i_ep in range(cfg['test_eps']):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
action = agent.predict_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
print(f"Episode: {i_ep+1}/{cfg['test_eps']}Reward: {ep_reward:.2f}")
print("Finish testing!")
env.close()
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
if __name__ == "__main__":
main = Main()
main.run()