hot update Double DQN

This commit is contained in:
johnjim0816
2022-08-30 16:29:57 +08:00
parent 0b0f7e857d
commit 764ba63d40
26 changed files with 803 additions and 365 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2022-08-23 23:59:54
LastEditTime: 2022-08-29 23:30:08
@Discription:
@Environment: python 3.7.7
'''
@@ -78,7 +78,7 @@ class DQN:
self.batch_size)
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize)
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1)
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
# print(state_batch.shape,action_batch.shape,reward_batch.shape,next_state_batch.shape,done_batch.shape)
@@ -91,7 +91,7 @@ class DQN:
# compute expected q value, for terminal state, done_batch[0]=1, and expected_q_value=rewardcorrespondingly
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch* (1-done_batch)
# print(expected_q_value_batch.shape,expected_q_value_batch.requires_grad)
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch) # shape same to
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch) # shape same to
# backpropagation
self.optimizer.zero_grad()
loss.backward()

View File

@@ -9,130 +9,122 @@ import torch
import datetime
import numpy as np
import argparse
from common.utils import save_results,all_seed
from common.utils import plot_rewards,save_args
from common.utils import all_seed
from common.models import MLP
from common.memories import ReplayBuffer
from common.launcher import Launcher
from envs.register import register_env
from dqn import DQN
class Main(Launcher):
def get_args(self):
""" hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=4,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--seed',default=10,type=int,help="seed")
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
# please manually change the following args in this script if you want
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models' )
args = parser.parse_args()
args = {**vars(args)} # type(dict)
return args
def get_args():
""" hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=4,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--seed',default=10,type=int,help="seed")
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
# please manually change the following args in this script if you want
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models' )
args = parser.parse_args()
args = {**vars(args)} # type(dict)
return args
def env_agent_config(cfg):
''' create env and agent
'''
register_env(cfg['env_name'])
env = gym.make(cfg['env_name'])
if cfg['seed'] !=0: # set random seed
all_seed(env,seed=cfg["seed"])
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
print(f"n_states: {n_states}, n_actions: {n_actions}")
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
model = MLP(n_states,n_actions,hidden_dim=cfg["hidden_dim"])
memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
agent = DQN(model,memory,cfg) # create agent
return env, agent
def env_agent_config(cfg):
''' create env and agent
'''
env = gym.make(cfg['env_name']) # create env
if cfg['seed'] !=0: # set random seed
all_seed(env,seed=cfg["seed"])
n_states = env.observation_space.shape[0] # state dimension
n_actions = env.action_space.n # action dimension
print(f"n_states: {n_states}, n_actions: {n_actions}")
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
model = MLP(n_states,n_actions,hidden_dim=cfg["hidden_dim"])
memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
agent = DQN(model,memory,cfg) # create agent
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print("Start training!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = []
for i_ep in range(cfg["train_eps"]):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
ep_step += 1
action = agent.sample_action(state) # sample action
next_state, reward, done, _ = env.step(action) # update env and return transitions
agent.memory.push(state, action, reward,
next_state, done) # save transitions
state = next_state # update next state for env
agent.update() # update agent
ep_reward += reward #
if done:
break
if (i_ep + 1) % cfg["target_update"] == 0: # target net update, target_update means "C" in pseucodes
agent.target_net.load_state_dict(agent.policy_net.state_dict())
steps.append(ep_step)
rewards.append(ep_reward)
if (i_ep + 1) % 10 == 0:
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
print("Finish training!")
env.close()
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
return res_dic
def train(cfg, env, agent):
''' 训练
'''
print("Start training!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = []
for i_ep in range(cfg["train_eps"]):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
ep_step += 1
action = agent.sample_action(state) # sample action
next_state, reward, done, _ = env.step(action) # update env and return transitions
agent.memory.push(state, action, reward,
next_state, done) # save transitions
state = next_state # update next state for env
agent.update() # update agent
ep_reward += reward #
if done:
break
if (i_ep + 1) % cfg["target_update"] == 0: # target net update, target_update means "C" in pseucodes
agent.target_net.load_state_dict(agent.policy_net.state_dict())
steps.append(ep_step)
rewards.append(ep_reward)
if (i_ep + 1) % 10 == 0:
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
print("Finish training!")
env.close()
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
return res_dic
def test(cfg, env, agent):
print("Start testing!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = []
for i_ep in range(cfg['test_eps']):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
ep_step+=1
action = agent.predict_action(state) # predict action
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
print(f"Episode: {i_ep+1}/{cfg['test_eps']}Reward: {ep_reward:.2f}")
print("Finish testing!")
env.close()
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
def test(cfg, env, agent):
print("Start testing!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = []
for i_ep in range(cfg['test_eps']):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
ep_step+=1
action = agent.predict_action(state) # predict action
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
print(f"Episode: {i_ep+1}/{cfg['test_eps']}Reward: {ep_reward:.2f}")
print("Finish testing!")
env.close()
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
if __name__ == "__main__":
cfg = get_args()
# training
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
save_args(cfg,path = cfg['result_path']) # save parameters
agent.save_model(path = cfg['model_path']) # save models
save_results(res_dic, tag = 'train', path = cfg['result_path']) # save results
plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "train") # plot results
# testing
env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step
agent.load_model(path = cfg['model_path']) # load model
res_dic = test(cfg, env, agent)
save_results(res_dic, tag='test',
path = cfg['result_path'])
plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "test")
main = Main()
main.run()

View File

@@ -1 +1,21 @@
{"algo_name": "DQN", "env_name": "CartPole-v0", "train_eps": 200, "test_eps": 20, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 500, "lr": 0.0001, "memory_capacity": 100000, "batch_size": 64, "target_update": 4, "hidden_dim": 256, "device": "cpu", "seed": 10, "result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/results", "model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/models", "show_fig": false, "save_fig": true}
{
"algo_name": "DQN",
"env_name": "CartPole-v0",
"train_eps": 200,
"test_eps": 20,
"gamma": 0.95,
"epsilon_start": 0.95,
"epsilon_end": 0.01,
"epsilon_decay": 500,
"lr": 0.0001,
"memory_capacity": 100000,
"batch_size": 64,
"target_update": 4,
"hidden_dim": 256,
"device": "cpu",
"seed": 10,
"result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/results",
"model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/models",
"show_fig": false,
"save_fig": true
}

View File

@@ -1 +1,24 @@
{"algo_name": "DQN", "env_name": "CartPole-v1", "train_eps": 2000, "test_eps": 20, "ep_max_steps": 100000, "gamma": 0.99, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 6000, "lr": 1e-05, "memory_capacity": 200000, "batch_size": 64, "target_update": 4, "hidden_dim": 256, "device": "cuda", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/results", "model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/models", "n_states": 4, "n_actions": 2}
{
"algo_name": "DQN",
"env_name": "CartPole-v1",
"train_eps": 2000,
"test_eps": 20,
"ep_max_steps": 100000,
"gamma": 0.99,
"epsilon_start": 0.95,
"epsilon_end": 0.01,
"epsilon_decay": 6000,
"lr": 1e-05,
"memory_capacity": 200000,
"batch_size": 64,
"target_update": 4,
"hidden_dim": 256,
"device": "cuda",
"seed": 10,
"show_fig": false,
"save_fig": true,
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/results",
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/models",
"n_states": 4,
"n_actions": 2
}