update
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-09-19 23:05:45
|
||||
LastEditTime: 2021-12-22 10:54:57
|
||||
Discription: use defaultdict to define Q table
|
||||
Environment:
|
||||
'''
|
||||
@@ -15,17 +15,17 @@ import torch
|
||||
from collections import defaultdict
|
||||
|
||||
class QLearning(object):
|
||||
def __init__(self,state_dim,
|
||||
action_dim,cfg):
|
||||
self.action_dim = action_dim # dimension of acgtion
|
||||
self.lr = cfg.lr # learning rate
|
||||
def __init__(self,n_states,
|
||||
n_actions,cfg):
|
||||
self.n_actions = n_actions
|
||||
self.lr = cfg.lr # 学习率
|
||||
self.gamma = cfg.gamma
|
||||
self.epsilon = 0
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # A nested dictionary that maps state -> (action -> action-value)
|
||||
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值(Q值)的映射,即Q表
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
@@ -34,7 +34,7 @@ class QLearning(object):
|
||||
if np.random.uniform(0, 1) > self.epsilon:
|
||||
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
|
||||
else:
|
||||
action = np.random.choice(self.action_dim) # 随机选择动作
|
||||
action = np.random.choice(self.n_actions) # 随机选择动作
|
||||
return action
|
||||
def predict(self,state):
|
||||
action = np.argmax(self.Q_table[str(state)])
|
||||
|
||||
|
Before Width: | Height: | Size: 49 KiB |
|
Before Width: | Height: | Size: 48 KiB |
|
Before Width: | Height: | Size: 33 KiB |
|
Before Width: | Height: | Size: 31 KiB |
|
Before Width: | Height: | Size: 42 KiB |
|
After Width: | Height: | Size: 24 KiB |
|
After Width: | Height: | Size: 38 KiB |
|
After Width: | Height: | Size: 13 KiB |
|
After Width: | Height: | Size: 18 KiB |
386
codes/QLearning/task0.ipynb
Normal file
93
codes/QLearning/task0.py
Normal file
@@ -0,0 +1,93 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-12-22 11:13:23
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from envs.gridworld_env import CliffWalkingWapper
|
||||
from QLearning.agent import QLearning
|
||||
from QLearning.train import train,test
|
||||
from common.utils import plot_rewards,plot_rewards_cn
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
algo_name = 'Q-learning' # 算法名称
|
||||
env_name = 'CliffWalking-v0' # 环境名称
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = device # 检测GPU
|
||||
self.train_eps = 400 # 训练的回合数
|
||||
self.test_eps = 30 # 测试的回合数
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # 学习率
|
||||
class PlotConfig:
|
||||
''' 绘图相关参数设置
|
||||
'''
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = device # 检测GPU
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
'''创建环境和智能体
|
||||
Args:
|
||||
cfg ([type]): [description]
|
||||
seed (int, optional): 随机种子. Defaults to 1.
|
||||
Returns:
|
||||
env [type]: 环境
|
||||
agent : 智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.n # 状态维度
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
agent = QLearning(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
|
||||
cfg = QlearningConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg, seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg, seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
|
||||
|
||||
@@ -1,126 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-09-23 12:22:58
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前路径
|
||||
parent_path=os.path.dirname(curr_path) # 父路径,这里就是我们的项目路径
|
||||
sys.path.append(parent_path) # 由于需要引用项目路径下的其他模块比如envs,所以需要添加路径到sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from envs.gridworld_env import CliffWalkingWapper
|
||||
from QLearning.agent import QLearning
|
||||
from common.plot import plot_rewards,plot_rewards_cn
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.algo = 'Q-learning' # 算法名称
|
||||
self.env = 'CliffWalking-v0' # 环境名称
|
||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.train_eps = 400 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # 学习率
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed) # 设置随机种子
|
||||
state_dim = env.observation_space.n # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = QLearning(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录奖励
|
||||
ma_rewards = [] # 记录滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境,即开始新的回合
|
||||
while True:
|
||||
action = agent.choose_action(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||
print(reward)
|
||||
agent.update(state, action, reward, next_state, done) # Q学习算法更新
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print("回合数:{}/{},奖励{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
|
||||
print('完成训练!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
for item in agent.Q_table.items():
|
||||
print(item)
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 滑动平均的奖励
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合)
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合数:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg,seed=0)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path) # 创建文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
for item in agent.Q_table.items():
|
||||
print(item)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) # 保存结果
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
# # 测试
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path) # 加载模型
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
51
codes/QLearning/train.py
Normal file
@@ -0,0 +1,51 @@
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录奖励
|
||||
ma_rewards = [] # 记录滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境,即开始新的回合
|
||||
while True:
|
||||
action = agent.choose_action(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||
agent.update(state, action, reward, next_state, done) # Q学习算法更新
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if ()
|
||||
print("回合数:{}/{},奖励{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
|
||||
print('完成训练!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
for item in agent.Q_table.items():
|
||||
print(item)
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 滑动平均的奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合)
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||