update projects
This commit is contained in:
@@ -63,18 +63,18 @@ class MLP(nn.Module):
|
||||
return self.fc3(x)
|
||||
|
||||
class DoubleDQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, n_states, n_actions, model, memory, cfg):
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.device = torch.device(cfg.device) # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma
|
||||
# e-greedy策略相关参数
|
||||
self.actions_count = 0
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = model.to(self.device)
|
||||
self.target_net = model.to(self.device)
|
||||
# target_net copy from policy_net
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
@@ -82,13 +82,13 @@ class DoubleDQN:
|
||||
# 可查parameters()与state_dict()的区别,前者require_grad=True
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.loss = 0
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.memory = memory
|
||||
|
||||
def choose_action(self, state):
|
||||
def sample(self, state):
|
||||
'''选择动作
|
||||
'''
|
||||
self.actions_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.actions_count / self.epsilon_decay)
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
@@ -104,9 +104,16 @@ class DoubleDQN:
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def predict(self, state):
|
||||
'''选择动作
|
||||
'''
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_value = self.policy_net(state)
|
||||
action = q_value.max(1)[1].item()
|
||||
return action
|
||||
def update(self):
|
||||
|
||||
if len(self.memory) < self.batch_size:
|
||||
if len(self.memory) < self.batch_size: # 只有memory满了才会更新
|
||||
return
|
||||
# 从memory中随机采样transition
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
@@ -150,7 +157,7 @@ class DoubleDQN:
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # 更新模型
|
||||
|
||||
|
||||
def save(self,path):
|
||||
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
|
||||
|
||||
|
||||
Reference in New Issue
Block a user