This commit is contained in:
qiwang067
2022-06-23 22:20:30 +08:00
parent 448b1ad4cf
commit 71f2ec05a3

View File

@@ -184,27 +184,28 @@ $$
### 1.2.3 序列决策
在一个强化学习环境里面,智能体的目的就是选取一系列的动作来最大化奖励,所以这些选取的动作 必须有长期的影响。但在这个过程里面,智能体的奖励其实是被延迟了的,就是我们现在选取的某一步动 作,可能要等到很久后才知道这一步到底产生了什么样的影响。如图 1.13 所示,在玩雅达利的 Pong 游戏 时我们可能只有到最后游戏结束时才知道球到底有没有被击打过去。过程中我们采取的上升up或 下降down动作并不会直接产生奖励。强化学习里面一个重要的课题就是近期奖励和远期奖励的权衡 trade-off研究怎么让智能体取得更多的远期奖励。
在一个强化学习环境里面,智能体的目的就是选取一系列的动作来最大化奖励,所以这些选取的动作 必须有长期的影响。但在这个过程里面,智能体的奖励其实是被延迟了的,就是我们现在选取的某一步动作,可能要等到很久后才知道这一步到底产生了什么样的影响。如图 1.13 所示,在玩雅达利的 Pong 游戏 时我们可能只有到最后游戏结束时才知道球到底有没有被击打过去。过程中我们采取的上升up或 下降down动作并不会直接产生奖励。强化学习里面一个重要的课题就是近期奖励和远期奖励的权衡 trade-off研究怎么让智能体取得更多的远期奖励。
在与环境的交互过程中,智能体会获得很多观测。针对每一个观测,智能体会采取一个动作,也会得到一个奖励。所以历史是观测、动作、奖励的序列:
$$
H_{t}=o_{1}, r_{1}, a_{1}, \ldots, o_{t}, a_{t}, r_{t}
$$
智能体在采取当前动作的时候会依赖于它之前得到的历史,所以我们可以把整个游戏的状态看成关于这个 历史的函数:
智能体在采取当前动作的时候会依赖于它之前得到的历史,所以我们可以把整个游戏的状态看成关于这个历史的函数:
$$
S_{t}=f\left(H_{t}\right)
$$
<div align=center>
<img width="550" src="../img/ch1/1.21.png"/>
</div>
<div align=center>图 1.13 玩Pong游戏</div>
$$
S_{t}=f\left(H_{t}\right)
$$
Q状态和观测有什么关系?
A**状态**是对世界的完整描述,不会隐藏世界的信息。**观测**是对状态的部分描述,可能会遗漏一些信 息。在深度强化学习中,我们几乎总是用实值的向量、矩阵或者更高阶的张量来表示状态和观测。例如, 我们可以用 RGB 像素值的矩阵来表示一个视觉的观测,可以用机器人关节的角度和速度来表示一个机器 人的状态。
A**状态**是对世界的完整描述,不会隐藏世界的信息。**观测**是对状态的部分描述,可能会遗漏一些信息。在深度强化学习中,我们几乎总是用实值的向量、矩阵或者更高阶的张量来表示状态和观测。例如, 我们可以用 RGB 像素值的矩阵来表示一个视觉的观测,可以用机器人关节的角度和速度来表示一个机器 人的状态。
环境有自己的函数$s_{t}^{e}=f^{e}\left(H_{t}\right)$ 来更新状态,在智能体的内部也有一个函数$s_{t}^{a}=f^{a}\left(H_{t}\right)$来更新状 态。当智能体的状态与环境的状态等价的时候,即当智能体能够观察到环境的所有状态时,我们称这个环 境是完全可观测的fully observed。在这种情况下面强化学习通常被建模成一个马尔可夫决策过程 Markov decision processMDP的问题。在马尔可夫决策过程中$o_{t}=s_{t}^{e}=s_{t}^{a}$。