update
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 21:16:50
|
||||
LastEditTime: 2021-03-26 17:16:07
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -35,20 +35,18 @@ if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.n_episodes = 200 # 训练的episode数目
|
||||
self.train_eps = 200 # 训练的episode数目
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # 学习率
|
||||
self.lr = 0.1 # learning rate
|
||||
|
||||
def train(cfg,env,agent):
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average reward
|
||||
steps = [] # 记录所有episode的steps
|
||||
for i_episode in range(cfg.n_episodes):
|
||||
for i_episode in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_steps = 0 # 记录每个episode走了多少step
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
@@ -63,12 +61,11 @@ def train(cfg,env,agent):
|
||||
break
|
||||
steps.append(ep_steps)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动平均的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward))
|
||||
return rewards,ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
@@ -77,7 +74,7 @@ def eval(cfg,env,agent):
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
steps = [] # 记录所有episode的steps
|
||||
for i_episode in range(cfg.n_episodes):
|
||||
for i_episode in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_steps = 0 # 记录每个episode走了多少step
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
@@ -96,15 +93,15 @@ def eval(cfg,env,agent):
|
||||
ma_rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward))
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env)
|
||||
n_actions = env.action_space.n
|
||||
agent = QLearning(n_actions,cfg)
|
||||
action_dim = env.action_space.n
|
||||
agent = QLearning(action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
|
||||
Reference in New Issue
Block a user