update
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 16:48:25
|
||||
LastEditTime: 2021-03-26 16:51:01
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -16,39 +16,35 @@ from collections import defaultdict
|
||||
|
||||
class QLearning(object):
|
||||
def __init__(self,
|
||||
n_actions,cfg):
|
||||
self.n_actions = n_actions # number of actions
|
||||
action_dim,cfg):
|
||||
self.action_dim = action_dim # dimension of acgtion
|
||||
self.lr = cfg.lr # learning rate
|
||||
self.gamma = cfg.gamma
|
||||
self.epsilon = 0
|
||||
self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减,所以需要计数
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 使用字典存储Q表,个人比较喜欢这种,也可以用下面一行的二维数组表示,但是需要额外更改代码
|
||||
# self.Q_table = np.zeros((n_states, n_actions)) # Q表
|
||||
self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # A nested dictionary that maps state -> (action -> action-value)
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
# 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取
|
||||
# e-greedy policy
|
||||
if np.random.uniform(0, 1) > self.epsilon:
|
||||
action = np.argmax(self.Q_table[state])
|
||||
action = np.argmax(self.Q_table[str(state)])
|
||||
else:
|
||||
action = np.random.choice(self.n_actions) # 有一定概率随机探索选取一个动作
|
||||
action = np.random.choice(self.action_dim)
|
||||
return action
|
||||
|
||||
def update(self, state, action, reward, next_state, done):
|
||||
Q_predict = self.Q_table[state][action]
|
||||
Q_predict = self.Q_table[str(state)][action]
|
||||
if done:
|
||||
Q_target = reward # terminal state
|
||||
else:
|
||||
Q_target = reward + self.gamma * np.max(
|
||||
self.Q_table[next_state]) # Q_table-learning
|
||||
self.Q_table[state][action] += self.lr * (Q_target - Q_predict)
|
||||
Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)])
|
||||
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
|
||||
def save(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
import dill
|
||||
torch.save(
|
||||
obj=self.Q_table,
|
||||
@@ -56,7 +52,5 @@ class QLearning(object):
|
||||
pickle_module=dill
|
||||
)
|
||||
def load(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
import dill
|
||||
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 21:16:50
|
||||
LastEditTime: 2021-03-26 17:16:07
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -35,20 +35,18 @@ if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.n_episodes = 200 # 训练的episode数目
|
||||
self.train_eps = 200 # 训练的episode数目
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # 学习率
|
||||
self.lr = 0.1 # learning rate
|
||||
|
||||
def train(cfg,env,agent):
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average reward
|
||||
steps = [] # 记录所有episode的steps
|
||||
for i_episode in range(cfg.n_episodes):
|
||||
for i_episode in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_steps = 0 # 记录每个episode走了多少step
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
@@ -63,12 +61,11 @@ def train(cfg,env,agent):
|
||||
break
|
||||
steps.append(ep_steps)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动平均的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward))
|
||||
return rewards,ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
@@ -77,7 +74,7 @@ def eval(cfg,env,agent):
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
steps = [] # 记录所有episode的steps
|
||||
for i_episode in range(cfg.n_episodes):
|
||||
for i_episode in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_steps = 0 # 记录每个episode走了多少step
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
@@ -96,15 +93,15 @@ def eval(cfg,env,agent):
|
||||
ma_rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward))
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env)
|
||||
n_actions = env.action_space.n
|
||||
agent = QLearning(n_actions,cfg)
|
||||
action_dim = env.action_space.n
|
||||
agent = QLearning(action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
|
||||
BIN
codes/QLearning/results/20210326-171621/ma_rewards_train.npy
Normal file
BIN
codes/QLearning/results/20210326-171621/ma_rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/QLearning/results/20210326-171621/rewards_curve_train.png
Normal file
BIN
codes/QLearning/results/20210326-171621/rewards_curve_train.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 40 KiB |
BIN
codes/QLearning/results/20210326-171621/rewards_train.npy
Normal file
BIN
codes/QLearning/results/20210326-171621/rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/QLearning/saved_model/20210326-171621/Qleaning_model.pkl
Normal file
BIN
codes/QLearning/saved_model/20210326-171621/Qleaning_model.pkl
Normal file
Binary file not shown.
Reference in New Issue
Block a user