This commit is contained in:
JohnJim0816
2021-03-28 11:18:52 +08:00
parent 2df8d965d2
commit 6e4d966e1f
56 changed files with 497 additions and 165 deletions

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-12 16:48:25
LastEditTime: 2021-03-26 16:51:01
Discription:
Environment:
'''
@@ -16,39 +16,35 @@ from collections import defaultdict
class QLearning(object):
def __init__(self,
n_actions,cfg):
self.n_actions = n_actions # number of actions
action_dim,cfg):
self.action_dim = action_dim # dimension of acgtion
self.lr = cfg.lr # learning rate
self.gamma = cfg.gamma
self.epsilon = 0
self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减所以需要计数
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 使用字典存储Q表个人比较喜欢这种也可以用下面一行的二维数组表示但是需要额外更改代码
# self.Q_table = np.zeros((n_states, n_actions)) # Q表
self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # A nested dictionary that maps state -> (action -> action-value)
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
# 随机选取0-1之间的值如果大于epsilon就按照贪心策略选取action否则随机选取
# e-greedy policy
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[state])
action = np.argmax(self.Q_table[str(state)])
else:
action = np.random.choice(self.n_actions) # 有一定概率随机探索选取一个动作
action = np.random.choice(self.action_dim)
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[state][action]
Q_predict = self.Q_table[str(state)][action]
if done:
Q_target = reward # terminal state
else:
Q_target = reward + self.gamma * np.max(
self.Q_table[next_state]) # Q_table-learning
self.Q_table[state][action] += self.lr * (Q_target - Q_predict)
Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)])
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q_table,
@@ -56,7 +52,5 @@ class QLearning(object):
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
import dill
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-12 21:16:50
LastEditTime: 2021-03-26 17:16:07
Discription:
Environment:
'''
@@ -35,20 +35,18 @@ if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
class QlearningConfig:
'''训练相关参数'''
def __init__(self):
self.n_episodes = 200 # 训练的episode数目
self.train_eps = 200 # 训练的episode数目
self.gamma = 0.9 # reward的衰减率
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
self.lr = 0.1 # 学习率
self.lr = 0.1 # learning rate
def train(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
rewards = []
ma_rewards = [] # moving average reward
steps = [] # 记录所有episode的steps
for i_episode in range(cfg.n_episodes):
for i_episode in range(cfg.train_eps):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
state = env.reset() # 重置环境, 重新开一局即开始新的一个episode
@@ -63,12 +61,11 @@ def train(cfg,env,agent):
break
steps.append(ep_steps)
rewards.append(ep_reward)
# 计算滑动平均的reward
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward))
return rewards,ma_rewards
def eval(cfg,env,agent):
@@ -77,7 +74,7 @@ def eval(cfg,env,agent):
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
steps = [] # 记录所有episode的steps
for i_episode in range(cfg.n_episodes):
for i_episode in range(cfg.train_eps):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
state = env.reset() # 重置环境, 重新开一局即开始新的一个episode
@@ -96,15 +93,15 @@ def eval(cfg,env,agent):
ma_rewards.append(rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward))
return rewards,ma_rewards
if __name__ == "__main__":
cfg = QlearningConfig()
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
env = CliffWalkingWapper(env)
n_actions = env.action_space.n
agent = QLearning(n_actions,cfg)
action_dim = env.action_space.n
agent = QLearning(action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB