This commit is contained in:
JohnJim0816
2021-03-28 11:18:52 +08:00
parent 2df8d965d2
commit 6e4d966e1f
56 changed files with 497 additions and 165 deletions

View File

@@ -0,0 +1,102 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-24 22:18:18
LastEditor: John
LastEditTime: 2021-03-27 04:24:30
Discription:
Environment:
'''
import torch
import torch.nn as nn
import numpy as np
import random,math
from HierarchicalDQN.model import MLP
from common.memory import ReplayBuffer
import torch.optim as optim
class HierarchicalDQN:
def __init__(self,state_dim,action_dim,cfg):
self.action_dim = action_dim
self.device = cfg.device
self.batch_size = cfg.batch_size
self.sample_count = 0
self.epsilon = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
self.target_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
self.meta_target_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
self.meta_memory = ReplayBuffer(cfg.memory_capacity)
def to_onehot(x):
oh = np.zeros(6)
oh[x - 1] = 1.
return oh
def set_goal(self,meta_state):
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
self.sample_count += 1
if random.random() > self.epsilon:
with torch.no_grad():
meta_state = torch.tensor([meta_state], device=self.device, dtype=torch.float32)
q_value = self.policy_net(meta_state)
goal = q_value.max(1)[1].item()
else:
goal = random.randrange(self.action_dim)
goal = self.meta_policy_net(meta_state)
onehot_goal = self.to_onehot(goal)
return onehot_goal
def choose_action(self,state):
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
self.sample_count += 1
if random.random() > self.epsilon:
with torch.no_grad():
state = torch.tensor([state], device=self.device, dtype=torch.float32)
q_value = self.policy_net(state)
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.action_dim)
return action
def update(self):
if self.batch_size > len(self.memory):
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
state_batch = torch.tensor(
state_batch, device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1)
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch)
next_state_values = self.target_net(next_state_batch).max(1)[0].detach()
expected_q_values = reward_batch + self.gamma * next_state_values * (1-done_batch[0])
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
for param in self.policy_net.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
if self.batch_size > len(self.meta_memory):
meta_state_batch, meta_action_batch, meta_reward_batch, next_meta_state_batch, meta_done_batch = self.memory.sample(self.batch_size)
meta_state_batch = torch.tensor(meta_state_batch, device=self.device, dtype=torch.float)
meta_action_batch = torch.tensor(meta_action_batch, device=self.device).unsqueeze(1)
meta_reward_batch = torch.tensor(meta_reward_batch, device=self.device, dtype=torch.float)
next_meta_state_batch = torch.tensor(next_meta_state_batch, device=self.device, dtype=torch.float)
meta_done_batch = torch.tensor(np.float32(meta_done_batch), device=self.device).unsqueeze(1)
meta_q_values = self.meta_policy_net(meta_state_batch).gather(dim=1, index=meta_action_batch)
next_state_values = self.target_net(next_meta_state_batch).max(1)[0].detach()
expected_meta_q_values = meta_reward_batch + self.gamma * next_state_values * (1-meta_done_batch[0])
meta_loss = nn.MSEmeta_loss()(meta_q_values, expected_meta_q_values.unsqueeze(1))
self.meta_optimizer.zero_grad()
meta_loss.backward()
for param in self.meta_policy_net.parameters():
param.grad.data.clamp_(-1, 1)
self.meta_optimizer.step()

View File

@@ -0,0 +1,97 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-24 22:14:04
LastEditor: John
LastEditTime: 2021-03-27 04:23:43
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd()) # add current terminal path to sys.path
import gym
import numpy as np
import torch
import datetime
from HierarchicalDQN.agent import HierarchicalDQN
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class HierarchicalDQNConfig:
def __init__(self):
self.algo = "DQN" # name of algo
self.gamma = 0.99
self.epsilon_start = 0.95 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.01 # learning rate
self.memory_capacity = 800 # Replay Memory capacity
self.batch_size = 64
self.train_eps = 250 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # dimension of hidden layer
def train(cfg,env,agent):
print('Start to train !')
rewards = []
ma_rewards = [] # moving average reward
ep_steps = []
for i_episode in range(cfg.train_eps):
state = env.reset()
extrinsic_reward = 0
for i_step in range(cfg.train_steps):
goal= agent.set_goal(state)
meta_state = state
goal_state = np.concatenate([state, goal])
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
extrinsic_reward += reward
intrinsic_reward = 1.0 if goal == np.argmax(next_state) else 0.0
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate([next_state, goal]), done)
state = next_state
agent.update()
if done:
break
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,extrinsic_reward,i_step+1,done))
ep_steps.append(i_step)
rewards.append(extrinsic_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*extrinsic_reward)
else:
ma_rewards.append(extrinsic_reward)
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
print('Complete training')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = HierarchicalDQNConfig()
env = gym.make('CartPole-v0')
env.seed(1)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = HierarchicalDQN(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)

View File

@@ -0,0 +1,24 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-24 22:14:12
LastEditor: John
LastEditTime: 2021-03-24 22:17:09
Discription:
Environment:
'''
import torch.nn as nn
import torch.nn.functional as F
class MLP(nn.Module):
def __init__(self, state_dim,action_dim,hidden_dim=128):
super(MLP, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)