hot update

This commit is contained in:
johnjim0816
2022-08-24 11:33:06 +08:00
parent ad65dd17cd
commit 62a7364c72
40 changed files with 2129 additions and 179 deletions

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-12-22 10:54:57
LastEditTime: 2022-08-24 10:31:04
Discription: use defaultdict to define Q table
Environment:
'''
@@ -15,50 +15,52 @@ import torch
from collections import defaultdict
class QLearning(object):
def __init__(self,
n_actions,cfg):
self.n_actions = n_actions
self.lr = cfg.lr # 学习率
self.gamma = cfg.gamma
self.epsilon = cfg.epsilon_start
def __init__(self,cfg):
self.n_actions = cfg['n_actions']
self.lr = cfg['lr']
self.gamma = cfg['gamma']
self.epsilon = cfg['epsilon_start']
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值Q值的映射即Q表
def sample(self, state):
''' 采样动作,训练时用
self.epsilon_start = cfg['epsilon_start']
self.epsilon_end = cfg['epsilon_end']
self.epsilon_decay = cfg['epsilon_decay']
self.Q_table = defaultdict(lambda: np.zeros(self.n_actions)) # use nested dictionary to represent Q(s,a), here set all Q(s,a)=0 initially, not like pseudo code
def sample_action(self, state):
''' sample action with e-greedy policy while training
'''
self.sample_count += 1
# epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay) # epsilon是会递减的这里选择指数递减
# e-greedy 策略
math.exp(-1. * self.sample_count / self.epsilon_decay)
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
action = np.argmax(self.Q_table[str(state)]) # choose action corresponding to the maximum q value
else:
action = np.random.choice(self.n_actions) # 随机选择动作
action = np.random.choice(self.n_actions) # choose action randomly
return action
def predict(self,state):
''' 预测或选择动作,测试时用
def predict_action(self,state):
''' predict action while testing
'''
action = np.argmax(self.Q_table[str(state)])
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[str(state)][action]
if done: # 终止状态
if done: # terminal state
Q_target = reward
else:
Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)])
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
def save_model(self,path):
import dill
from pathlib import Path
# create path
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(
obj=self.Q_table,
f=path+"Qleaning_model.pkl",
pickle_module=dill
)
print("保存模型成功!")
def load(self, path):
print("Model saved!")
def load_model(self, path):
import dill
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
print("加载模型成功!")
print("Mode loaded!")