hot update
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-08-18 14:27:18
|
||||
LastEditTime: 2022-08-23 23:59:54
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -20,26 +20,26 @@ import math
|
||||
import numpy as np
|
||||
|
||||
class DQN:
|
||||
def __init__(self,n_actions,model,memory,cfg):
|
||||
def __init__(self,model,memory,cfg):
|
||||
|
||||
self.n_actions = n_actions
|
||||
self.device = torch.device(cfg.device)
|
||||
self.gamma = cfg.gamma
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.gamma = cfg['gamma']
|
||||
## e-greedy parameters
|
||||
self.sample_count = 0 # sample count for epsilon decay
|
||||
self.epsilon = cfg.epsilon_start
|
||||
self.epsilon = cfg['epsilon_start']
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.epsilon_start = cfg['epsilon_start']
|
||||
self.epsilon_end = cfg['epsilon_end']
|
||||
self.epsilon_decay = cfg['epsilon_decay']
|
||||
self.batch_size = cfg['batch_size']
|
||||
self.policy_net = model.to(self.device)
|
||||
self.target_net = model.to(self.device)
|
||||
## copy parameters from policy net to target net
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
|
||||
self.memory = memory
|
||||
self.update_flag = False
|
||||
|
||||
|
||||
137
projects/codes/DQN/main.py
Normal file
137
projects/codes/DQN/main.py
Normal file
@@ -0,0 +1,137 @@
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
import argparse
|
||||
from common.utils import save_results,all_seed
|
||||
from common.utils import plot_rewards,save_args
|
||||
from common.models import MLP
|
||||
from common.memories import ReplayBuffer
|
||||
from dqn import DQN
|
||||
|
||||
def get_args():
|
||||
""" hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
parser.add_argument('--target_update',default=4,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
# please manually change the following args in this script if you want
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models' )
|
||||
args = parser.parse_args()
|
||||
args = {**vars(args)} # type(dict)
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
env = gym.make(cfg['env_name']) # create env
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
n_states = env.observation_space.shape[0] # state dimension
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
model = MLP(n_states,n_actions,hidden_dim=cfg["hidden_dim"])
|
||||
memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
|
||||
agent = DQN(model,memory,cfg) # create agent
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print("start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algo: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg["train_eps"]):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
ep_step += 1
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # save transitions
|
||||
state = next_state # update next state for env
|
||||
agent.update() # update agent
|
||||
ep_reward += reward #
|
||||
if done:
|
||||
break
|
||||
if (i_ep + 1) % cfg["target_update"] == 0: # target net update, target_update means "C" in pseucodes
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
print("finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
return res_dic
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print("start testing!")
|
||||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
ep_step+=1
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||||
print("finish testing!")
|
||||
env.close()
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# training
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
save_args(cfg,path = cfg['result_path']) # save parameters
|
||||
agent.save_model(path = cfg['model_path']) # save models
|
||||
save_results(res_dic, tag = 'train', path = cfg['result_path']) # save results
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "train") # plot results
|
||||
# testing
|
||||
env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step
|
||||
agent.load_model(path = cfg['model_path']) # load model
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path = cfg['result_path'])
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "test")
|
||||
Binary file not shown.
@@ -0,0 +1 @@
|
||||
{"algo_name": "DQN", "env_name": "CartPole-v0", "train_eps": 200, "test_eps": 20, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 500, "lr": 0.0001, "memory_capacity": 100000, "batch_size": 64, "target_update": 4, "hidden_dim": 256, "device": "cpu", "seed": 10, "result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/results", "model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/models", "show_fig": false, "save_fig": true}
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 27 KiB |
@@ -0,0 +1,21 @@
|
||||
episodes,rewards
|
||||
0,200.0
|
||||
1,200.0
|
||||
2,200.0
|
||||
3,200.0
|
||||
4,200.0
|
||||
5,200.0
|
||||
6,200.0
|
||||
7,200.0
|
||||
8,200.0
|
||||
9,200.0
|
||||
10,200.0
|
||||
11,200.0
|
||||
12,200.0
|
||||
13,200.0
|
||||
14,200.0
|
||||
15,200.0
|
||||
16,200.0
|
||||
17,200.0
|
||||
18,200.0
|
||||
19,200.0
|
||||
|
Binary file not shown.
|
After Width: | Height: | Size: 38 KiB |
@@ -0,0 +1,201 @@
|
||||
episodes,rewards
|
||||
0,38.0
|
||||
1,16.0
|
||||
2,37.0
|
||||
3,15.0
|
||||
4,22.0
|
||||
5,34.0
|
||||
6,20.0
|
||||
7,12.0
|
||||
8,16.0
|
||||
9,14.0
|
||||
10,13.0
|
||||
11,21.0
|
||||
12,14.0
|
||||
13,12.0
|
||||
14,17.0
|
||||
15,12.0
|
||||
16,10.0
|
||||
17,14.0
|
||||
18,10.0
|
||||
19,10.0
|
||||
20,16.0
|
||||
21,9.0
|
||||
22,14.0
|
||||
23,13.0
|
||||
24,10.0
|
||||
25,9.0
|
||||
26,12.0
|
||||
27,12.0
|
||||
28,14.0
|
||||
29,11.0
|
||||
30,9.0
|
||||
31,8.0
|
||||
32,9.0
|
||||
33,11.0
|
||||
34,12.0
|
||||
35,10.0
|
||||
36,11.0
|
||||
37,10.0
|
||||
38,10.0
|
||||
39,18.0
|
||||
40,13.0
|
||||
41,15.0
|
||||
42,10.0
|
||||
43,9.0
|
||||
44,14.0
|
||||
45,14.0
|
||||
46,23.0
|
||||
47,17.0
|
||||
48,15.0
|
||||
49,15.0
|
||||
50,20.0
|
||||
51,28.0
|
||||
52,36.0
|
||||
53,36.0
|
||||
54,23.0
|
||||
55,27.0
|
||||
56,53.0
|
||||
57,19.0
|
||||
58,35.0
|
||||
59,62.0
|
||||
60,57.0
|
||||
61,38.0
|
||||
62,61.0
|
||||
63,65.0
|
||||
64,58.0
|
||||
65,43.0
|
||||
66,67.0
|
||||
67,56.0
|
||||
68,91.0
|
||||
69,128.0
|
||||
70,71.0
|
||||
71,126.0
|
||||
72,100.0
|
||||
73,200.0
|
||||
74,200.0
|
||||
75,200.0
|
||||
76,200.0
|
||||
77,200.0
|
||||
78,200.0
|
||||
79,200.0
|
||||
80,200.0
|
||||
81,200.0
|
||||
82,200.0
|
||||
83,200.0
|
||||
84,200.0
|
||||
85,200.0
|
||||
86,200.0
|
||||
87,200.0
|
||||
88,200.0
|
||||
89,200.0
|
||||
90,200.0
|
||||
91,200.0
|
||||
92,200.0
|
||||
93,200.0
|
||||
94,200.0
|
||||
95,200.0
|
||||
96,200.0
|
||||
97,200.0
|
||||
98,200.0
|
||||
99,200.0
|
||||
100,200.0
|
||||
101,200.0
|
||||
102,200.0
|
||||
103,200.0
|
||||
104,200.0
|
||||
105,200.0
|
||||
106,200.0
|
||||
107,200.0
|
||||
108,200.0
|
||||
109,200.0
|
||||
110,200.0
|
||||
111,200.0
|
||||
112,200.0
|
||||
113,200.0
|
||||
114,200.0
|
||||
115,200.0
|
||||
116,200.0
|
||||
117,200.0
|
||||
118,200.0
|
||||
119,200.0
|
||||
120,200.0
|
||||
121,200.0
|
||||
122,200.0
|
||||
123,200.0
|
||||
124,200.0
|
||||
125,200.0
|
||||
126,200.0
|
||||
127,200.0
|
||||
128,200.0
|
||||
129,200.0
|
||||
130,200.0
|
||||
131,200.0
|
||||
132,200.0
|
||||
133,200.0
|
||||
134,200.0
|
||||
135,200.0
|
||||
136,200.0
|
||||
137,200.0
|
||||
138,200.0
|
||||
139,200.0
|
||||
140,200.0
|
||||
141,200.0
|
||||
142,200.0
|
||||
143,200.0
|
||||
144,200.0
|
||||
145,200.0
|
||||
146,200.0
|
||||
147,200.0
|
||||
148,200.0
|
||||
149,200.0
|
||||
150,200.0
|
||||
151,200.0
|
||||
152,200.0
|
||||
153,200.0
|
||||
154,200.0
|
||||
155,200.0
|
||||
156,200.0
|
||||
157,200.0
|
||||
158,200.0
|
||||
159,200.0
|
||||
160,200.0
|
||||
161,200.0
|
||||
162,200.0
|
||||
163,200.0
|
||||
164,200.0
|
||||
165,200.0
|
||||
166,200.0
|
||||
167,200.0
|
||||
168,200.0
|
||||
169,200.0
|
||||
170,200.0
|
||||
171,200.0
|
||||
172,200.0
|
||||
173,200.0
|
||||
174,200.0
|
||||
175,200.0
|
||||
176,200.0
|
||||
177,200.0
|
||||
178,200.0
|
||||
179,200.0
|
||||
180,200.0
|
||||
181,200.0
|
||||
182,200.0
|
||||
183,200.0
|
||||
184,200.0
|
||||
185,200.0
|
||||
186,200.0
|
||||
187,200.0
|
||||
188,200.0
|
||||
189,200.0
|
||||
190,200.0
|
||||
191,200.0
|
||||
192,200.0
|
||||
193,200.0
|
||||
194,200.0
|
||||
195,200.0
|
||||
196,200.0
|
||||
197,200.0
|
||||
198,200.0
|
||||
199,200.0
|
||||
|
Reference in New Issue
Block a user