This commit is contained in:
JohnJim0816
2020-10-07 21:47:25 +08:00
parent 07b835663a
commit 5fe8bfc6c1
23 changed files with 378 additions and 139 deletions

155
codes/Q-learning/main.py Normal file
View File

@@ -0,0 +1,155 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2020-10-07 21:05:33
Discription:
Environment:
'''
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
import gym
from gridworld import CliffWalkingWapper, FrozenLakeWapper
from agent import QLearning
import os
import numpy as np
import argparse
import time
import matplotlib.pyplot as plt
def get_args():
'''训练的模型参数
'''
parser = argparse.ArgumentParser()
parser.add_argument("--gamma", default=0.9,
type=float, help="reward 的衰减率")
parser.add_argument("--epsilon_start", default=0.9,
type=float,help="e-greedy策略中初始epsilon")
parser.add_argument("--epsilon_end", default=0.1, type=float,help="e-greedy策略中的结束epsilon")
parser.add_argument("--epsilon_decay", default=200, type=float,help="e-greedy策略中epsilon的衰减率")
parser.add_argument("--policy_lr", default=0.1, type=float,help="学习率")
parser.add_argument("--max_episodes", default=500, type=int,help="训练的最大episode数目")
config = parser.parse_args()
return config
def train(cfg):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
env = CliffWalkingWapper(env)
agent = QLearning(
obs_dim=env.observation_space.n,
action_dim=env.action_space.n,
learning_rate=cfg.policy_lr,
gamma=cfg.gamma,
epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay)
render = False # 是否打开GUI画面
rewards = [] # 记录所有episode的reward
MA_rewards = [] # 记录滑动平均的reward
steps = []# 记录所有episode的steps
for i_episode in range(1,cfg.max_episodes+1):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.sample(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
# 训练 Q-learning算法
agent.learn(obs, action, reward, next_obs, done) # 不需要下一步的action
obs = next_obs # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if render:
env.render() #渲染新的一帧图形
if done:
break
steps.append(ep_steps)
rewards.append(ep_reward)
# 计算滑动平均的reward
if i_episode == 1:
MA_rewards.append(ep_reward)
else:
MA_rewards.append(
0.9*MA_rewards[-1]+0.1*ep_reward)
print('Episode %s: steps = %s , reward = %.1f, explore = %.2f' % (i_episode, ep_steps,
ep_reward,agent.epsilon))
# 每隔20个episode渲染一下看看效果
if i_episode % 20 == 0:
render = True
else:
render = False
agent.save() # 训练结束,保存模型
output_path = os.path.dirname(__file__)+"/result/"
# 检测是否存在文件夹
if not os.path.exists(output_path):
os.mkdir(output_path)
np.save(output_path+"rewards_train.npy", rewards)
np.save(output_path+"MA_rewards_train.npy", MA_rewards)
np.save(output_path+"steps_train.npy", steps)
def test(cfg):
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
env = CliffWalkingWapper(env)
agent = QLearning(
obs_dim=env.observation_space.n,
action_dim=env.action_space.n,
learning_rate=cfg.policy_lr,
gamma=cfg.gamma,
epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay)
agent.load() # 导入保存的模型
rewards = [] # 记录所有episode的reward
MA_rewards = [] # 记录滑动平均的reward
steps = []# 记录所有episode的steps
for i_episode in range(1,10+1):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.predict(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
obs = next_obs # 存储上一个观察值
time.sleep(0.5)
env.render()
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
rewards.append(ep_reward)
# 计算滑动平均的reward
if i_episode == 1:
MA_rewards.append(ep_reward)
else:
MA_rewards.append(
0.9*MA_rewards[-1]+0.1*ep_reward)
print('Episode %s: steps = %s , reward = %.1f' % (i_episode, ep_steps, ep_reward))
plt.plot(MA_rewards)
plt.show()
def main():
cfg = get_args()
# train(cfg)
test(cfg)
if __name__ == "__main__":
main()