From 5b5d78c309e6b8b9d33d111f1ad1963c56883dfc Mon Sep 17 00:00:00 2001 From: JohnJim0816 Date: Mon, 15 Mar 2021 17:17:16 +0800 Subject: [PATCH] update common --- codes/common/memory.py | 34 ++++++++++++++++++++++++++++++++++ codes/common/model.py | 26 ++++++++++++++++++++++---- 2 files changed, 56 insertions(+), 4 deletions(-) create mode 100644 codes/common/memory.py diff --git a/codes/common/memory.py b/codes/common/memory.py new file mode 100644 index 0000000..a9906e9 --- /dev/null +++ b/codes/common/memory.py @@ -0,0 +1,34 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-10 15:27:16 +@LastEditor: John +LastEditTime: 2021-03-13 11:37:15 +@Discription: +@Environment: python 3.7.7 +''' +import random + +class ReplayBuffer: + + def __init__(self, capacity): + self.capacity = capacity + self.buffer = [] + self.position = 0 + + def push(self, state, action, reward, next_state, done): + if len(self.buffer) < self.capacity: + self.buffer.append(None) + self.buffer[self.position] = (state, action, reward, next_state, done) + self.position = (self.position + 1) % self.capacity + + def sample(self, batch_size): + batch = random.sample(self.buffer, batch_size) + state, action, reward, next_state, done = zip(*batch) + return state, action, reward, next_state, done + + def __len__(self): + return len(self.buffer) + diff --git a/codes/common/model.py b/codes/common/model.py index 0f367f2..c99d4a3 100644 --- a/codes/common/model.py +++ b/codes/common/model.py @@ -5,19 +5,19 @@ Author: John Email: johnjim0816@gmail.com Date: 2021-03-12 21:14:12 LastEditor: John -LastEditTime: 2021-03-13 11:51:38 +LastEditTime: 2021-03-13 13:48:35 Discription: Environment: ''' import torch.nn as nn import torch.nn.functional as F -class MLP(nn.Module): +class MLP1(nn.Module): ''' 多层感知机 输入:state维度 输出:概率 ''' def __init__(self,n_states,hidden_dim = 36): - super(MLP, self).__init__() + super(MLP1, self).__init__() # 24和36为hidden layer的层数,可根据state_dim, n_actions的情况来改变 self.fc1 = nn.Linear(n_states, hidden_dim) self.fc2 = nn.Linear(hidden_dim,hidden_dim) @@ -27,4 +27,22 @@ class MLP(nn.Module): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.sigmoid(self.fc3(x)) - return x \ No newline at end of file + return x + + +class MLP2(nn.Module): + def __init__(self, n_states,n_actions,hidden_dim=128): + """ 初始化q网络,为全连接网络 + n_states: 输入的feature即环境的state数目 + n_actions: 输出的action总个数 + """ + super(MLP2, self).__init__() + self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层 + self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层 + self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层 + + def forward(self, x): + # 各层对应的激活函数 + x = F.relu(self.fc1(x)) + x = F.relu(self.fc2(x)) + return self.fc3(x) \ No newline at end of file