add some code
This commit is contained in:
92
docs/code/Sarsa/train.py
Normal file
92
docs/code/Sarsa/train.py
Normal file
@@ -0,0 +1,92 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import gym
|
||||
from gridworld import CliffWalkingWapper, FrozenLakeWapper
|
||||
from agent import SarsaAgent
|
||||
import time
|
||||
|
||||
|
||||
def run_episode(env, agent, render=False):
|
||||
total_steps = 0 # 记录每个episode走了多少step
|
||||
total_reward = 0
|
||||
|
||||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
action = agent.sample(obs) # 根据算法选择一个动作
|
||||
|
||||
while True:
|
||||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
next_action = agent.sample(next_obs) # 根据算法选择一个动作
|
||||
# 训练 Sarsa 算法
|
||||
agent.learn(obs, action, reward, next_obs, next_action, done)
|
||||
|
||||
action = next_action
|
||||
obs = next_obs # 存储上一个观察值
|
||||
total_reward += reward
|
||||
total_steps += 1 # 计算step数
|
||||
if render:
|
||||
env.render() #渲染新的一帧图形
|
||||
if done:
|
||||
break
|
||||
return total_reward, total_steps
|
||||
|
||||
|
||||
def test_episode(env, agent):
|
||||
total_reward = 0
|
||||
obs = env.reset()
|
||||
while True:
|
||||
action = agent.predict(obs) # greedy,只取最优的动作
|
||||
next_obs, reward, done, _ = env.step(action)
|
||||
total_reward += reward
|
||||
obs = next_obs
|
||||
time.sleep(0.5) # 每个step延迟0.5秒来看看效果
|
||||
env.render()
|
||||
if done:
|
||||
print('test reward = %.1f' % (total_reward))
|
||||
break
|
||||
|
||||
|
||||
def main():
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env) # 这行不加也可以,这个是为了显示效果更好一点
|
||||
|
||||
agent = SarsaAgent(
|
||||
obs_n=env.observation_space.n,
|
||||
act_n=env.action_space.n,
|
||||
learning_rate=0.1,
|
||||
gamma=0.9,
|
||||
e_greed=0.1)
|
||||
|
||||
is_render = False
|
||||
for episode in range(500):
|
||||
ep_reward, ep_steps = run_episode(env, agent, is_render)
|
||||
print('Episode %s: steps = %s , reward = %.1f' % (episode, ep_steps,
|
||||
ep_reward))
|
||||
|
||||
# 每隔20个episode渲染一下看看效果(每个episode都渲染的话,时间会比较长)
|
||||
if episode % 20 == 0:
|
||||
is_render = True
|
||||
else:
|
||||
is_render = False
|
||||
# 训练结束,查看算法效果
|
||||
test_episode(env, agent)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user