diff --git a/docs/chapter3/chapter3.md b/docs/chapter3/chapter3.md index 952724c..3ecbdf2 100644 --- a/docs/chapter3/chapter3.md +++ b/docs/chapter3/chapter3.md @@ -44,7 +44,7 @@ MDP 就是序列决策这样一个经典的表达方式。MDP 也是强化学习 ![](img/3.5.png)Q: 为什么可以用未来的总收益来评价当前这个动作是好是坏? -A: 举个例子,假设一辆车在路上,当前是红灯,我们直接走的收益就很低,因为违反交通规则,这就是当前的单步收益。可是如果我们这是一辆救护车,我们正在运送病人,把病人快速送达医院的收益非常的高,而且越快你的收益越大。在这种情况下,我们很可能应该要闯红灯,因为未来的远期收益太高了。这也是为什么强化学习需要去学习远期的收益,因为在现实世界中奖励往往是延迟的,是有delay 的。所以我们一般会从当前状态开始,把后续有可能会收到所有收益加起来计算当前动作的 Q 的价值,让 Q 的价值可以真正地代表当前这个状态下,动作的真正的价值。 +A: 举个例子,假设一辆车在路上,当前是红灯,我们直接走的收益就很低,因为违反交通规则,这就是当前的单步收益。可是如果我们这是一辆救护车,我们正在运送病人,把病人快速送达医院的收益非常的高,而且越快你的收益越大。在这种情况下,我们很可能应该要闯红灯,因为未来的远期收益太高了。这也是为什么强化学习需要去学习远期的收益,因为在现实世界中奖励往往是延迟的,是有 delay 的。所以我们一般会从当前状态开始,把后续有可能会收到所有收益加起来计算当前动作的 Q 的价值,让 Q 的价值可以真正地代表当前这个状态下,动作的真正的价值。 ![](img/3.6.png) diff --git a/docs/chapter4/chapter4_questions&keywords.md b/docs/chapter4/chapter4_questions&keywords.md index 48eb760..be9046f 100644 --- a/docs/chapter4/chapter4_questions&keywords.md +++ b/docs/chapter4/chapter4_questions&keywords.md @@ -1,70 +1,70 @@ -## Chapter4 梯度策略 - -#### 1 关键词 - -- **policy(策略):** 每一个actor中会有对应的策略,这个策略决定了actor的行为。具体来说,Policy 就是给一个外界的输入,然后它会输出 actor 现在应该要执行的行为。**一般地,我们将policy写成 $\pi$ 。** -- **Return(回报):** 一个回合(Episode)或者试验(Trial)所得到的所有的reward的总和,也被人们称为Total reward。**一般地,我们用 $R$ 来表示他。** -- **Trajectory:** 一个试验中我们将environment 输出的 $s$ 跟 actor 输出的行为 $a$,把这个 $s$ 跟 $a$ 全部串起来形成的集合,我们称为Trajectory,即 $\text { Trajectory } \tau=\left\{s_{1}, a_{1}, s_{2}, a_{2}, \cdots, s_{t}, a_{t}\right\}$。 -- **Reward function:** 根据在某一个 state 采取的某一个 action 决定说现在这个行为可以得到多少的分数,它是一个 function。也就是给一个 $s_1$,$a_1$,它告诉你得到 $r_1$。给它 $s_2$ ,$a_2$,它告诉你得到 $r_2$。 把所有的 $r$ 都加起来,我们就得到了 $R(\tau)$ ,代表某一个 trajectory $\tau$ 的 reward。 -- **Expected reward:** $\bar{R}_{\theta}=\sum_{\tau} R(\tau) p_{\theta}(\tau)=E_{\tau \sim p_{\theta}(\tau)}[R(\tau)]$。 -- **Reinforce:** 基于策略梯度的强化学习的经典算法,其采用回合更新的模式。 - -#### 2 思考题 - -- 如果我们想让机器人自己玩video game, 那么强化学习中三个组成(actor、environment、reward function)部分具体分别是什么? - - 答:actor 做的事情就是去操控游戏的摇杆, 比如说向左、向右、开火等操作;environment 就是游戏的主机, 负责控制游戏的画面负责控制说,怪物要怎么移动, 你现在要看到什么画面等等;reward function 就是当你做什么事情,发生什么状况的时候,你可以得到多少分数, 比如说杀一只怪兽得到 20 分等等。 - -- 在一个process中,一个具体的trajectory $s_1$,$a_1$, $s_2$ , $a_2$ 出现的概率取决于什么? - - 答: - - 1. 一部分是 **environment 的行为**, environment 的 function 它内部的参数或内部的规则长什么样子。 $p(s_{t+1}|s_t,a_t)$这一项代表的是 environment, environment 这一项通常你是无法控制它的,因为那个是人家写好的,你不能控制它。 - - 2. 另一部分是 **agent 的行为**,你能控制的是 $p_\theta(a_t|s_t)$。给定一个 $s_t$, actor 要采取什么样的 $a_t$ 会取决于你 actor 的参数 $\theta$, 所以这部分是 actor 可以自己控制的。随着 actor 的行为不同,每个同样的 trajectory, 它就会有不同的出现的概率。 - -- 当我们在计算 maximize expected reward时,应该使用什么方法? - - 答: **gradient ascent(梯度上升)**,因为要让它越大越好,所以是 gradient ascent。Gradient ascent 在 update 参数的时候要加。要进行 gradient ascent,我们先要计算 expected reward $\bar{R}$ 的 gradient 。我们对 $\bar{R}$ 取一个 gradient,这里面只有 $p_{\theta}(\tau)$ 是跟 $\theta$ 有关,所以 gradient 就放在 $p_{\theta}(\tau)$ 这个地方。 - -- 我们应该如何理解梯度策略的公式呢? - - 答: - $$ - \begin{aligned} - E_{\tau \sim p_{\theta}(\tau)}\left[R(\tau) \nabla \log p_{\theta}(\tau)\right] &\approx \frac{1}{N} \sum_{n=1}^{N} R\left(\tau^{n}\right) \nabla \log p_{\theta}\left(\tau^{n}\right) \\ - &=\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R\left(\tau^{n}\right) \nabla \log p_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right) - \end{aligned} - $$ - $p_{\theta}(\tau)$ 里面有两项,$p(s_{t+1}|s_t,a_t)$ 来自于 environment,$p_\theta(a_t|s_t)$ 是来自于 agent。 $p(s_{t+1}|s_t,a_t)$ 由环境决定从而与 $\theta$ 无关,因此 $\nabla \log p(s_{t+1}|s_t,a_t) =0 $。因此 $\nabla p_{\theta}(\tau)= - \nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)$。 - - 具体来说: - - * 假设你在 $s_t$ 执行 $a_t$,最后发现 $\tau$ 的 reward 是正的, 那你就要增加这一项的概率,你就要增加在 $s_t$ 执行 $a_t$ 的概率。 - * 反之,在 $s_t$ 执行 $a_t$ 会导致$\tau$ 的 reward 变成负的, 你就要减少这一项的概率。 - -- 我们可以使用哪些方法来进行gradient ascent的计算? - - 答:用 gradient ascent 来 update 参数,对于原来的参数 $\theta$ ,可以将原始的 $\theta$ 加上更新的 gradient 这一项,再乘以一个 learning rate,learning rate 其实也是要调的,和神经网络一样,我们可以使用 Adam、RMSProp 等优化器对其进行调整。 - -- 我们进行基于梯度策略的优化时的小技巧有哪些? - - 答: - - 1. **Add a baseline:**为了防止所有的reward都大于0,从而导致每一个stage和action的变换,会使得每一项的概率都会上升。所以通常为了解决这个问题,我们把reward 减掉一项叫做 b,这项 b 叫做 baseline。你减掉这项 b 以后,就可以让 $R(\tau^n)-b$ 这一项, 有正有负。 所以如果得到的 total reward $R(\tau^n)$ 大于 b 的话,就让它的概率上升。如果这个 total reward 小于 b,就算它是正的,正的很小也是不好的,你就要让这一项的概率下降。 如果$R(\tau^n)