This commit is contained in:
johnjim0816
2021-09-15 10:32:52 +08:00
parent 95f3f4dd57
commit 5085040330
74 changed files with 431 additions and 433 deletions

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-04-29 16:59:41
LastEditTime: 2021-09-11 21:53:18
Discription: use defaultdict to define Q table
Environment:
'''
@@ -30,20 +30,20 @@ class QLearning(object):
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
# e-greedy policy
math.exp(-1. * self.sample_count / self.epsilon_decay) # epsilon是会递减的这里选择指数递减
# e-greedy 策略
if np.random.uniform(0, 1) > self.epsilon:
action = self.predict(state)
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
else:
action = np.random.choice(self.action_dim)
action = np.random.choice(self.action_dim) # 随机选择动作
return action
def predict(self,state):
action = np.argmax(self.Q_table[str(state)])
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[str(state)][action]
if done:
Q_target = reward # terminal state
Q_predict = self.Q_table[str(state)][action]
if done: # 终止状态
Q_target = reward
else:
Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)])
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
@@ -54,6 +54,8 @@ class QLearning(object):
f=path+"Qleaning_model.pkl",
pickle_module=dill
)
print("保存模型成功!")
def load(self, path):
import dill
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
print("加载模型成功!")