update
This commit is contained in:
@@ -1,3 +0,0 @@
|
||||
# Q-learning
|
||||
|
||||
#TODO
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 16:59:41
|
||||
LastEditTime: 2021-09-11 21:53:18
|
||||
Discription: use defaultdict to define Q table
|
||||
Environment:
|
||||
'''
|
||||
@@ -30,20 +30,20 @@ class QLearning(object):
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
# e-greedy policy
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay) # epsilon是会递减的,这里选择指数递减
|
||||
# e-greedy 策略
|
||||
if np.random.uniform(0, 1) > self.epsilon:
|
||||
action = self.predict(state)
|
||||
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
|
||||
else:
|
||||
action = np.random.choice(self.action_dim)
|
||||
action = np.random.choice(self.action_dim) # 随机选择动作
|
||||
return action
|
||||
def predict(self,state):
|
||||
action = np.argmax(self.Q_table[str(state)])
|
||||
return action
|
||||
def update(self, state, action, reward, next_state, done):
|
||||
Q_predict = self.Q_table[str(state)][action]
|
||||
if done:
|
||||
Q_target = reward # terminal state
|
||||
Q_predict = self.Q_table[str(state)][action]
|
||||
if done: # 终止状态
|
||||
Q_target = reward
|
||||
else:
|
||||
Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)])
|
||||
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
|
||||
@@ -54,6 +54,8 @@ class QLearning(object):
|
||||
f=path+"Qleaning_model.pkl",
|
||||
pickle_module=dill
|
||||
)
|
||||
print("保存模型成功!")
|
||||
def load(self, path):
|
||||
import dill
|
||||
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
|
||||
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
|
||||
print("加载模型成功!")
|
||||
@@ -1,88 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 17:02:00
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 16:45:33
|
||||
Discription: use np array to define Q table
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
class QLearning(object):
|
||||
def __init__(self,
|
||||
state_dim,action_dim,cfg):
|
||||
self.action_dim = action_dim # dimension of acgtion
|
||||
self.lr = cfg.lr # learning rate
|
||||
self.gamma = cfg.gamma
|
||||
self.epsilon = 0
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q_table = np.zeros((state_dim, action_dim)) # Q表
|
||||
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if np.random.uniform(0, 1) > self.epsilon: # 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = np.random.choice(self.action_dim) #有一定概率随机探索选取一个动作
|
||||
return action
|
||||
|
||||
def predict(self, state):
|
||||
'''根据输入观测值,采样输出的动作值,带探索,测试模型时使用
|
||||
'''
|
||||
Q_list = self.Q_table[state, :]
|
||||
Q_max = np.max(Q_list)
|
||||
action_list = np.where(Q_list == Q_max)[0]
|
||||
action = np.random.choice(action_list) # Q_max可能对应多个 action ,可以随机抽取一个
|
||||
return action
|
||||
|
||||
def update(self, state, action, reward, next_state, done):
|
||||
Q_predict = self.Q_table[state, action]
|
||||
if done:
|
||||
Q_target = reward # 没有下一个状态了
|
||||
else:
|
||||
Q_target = reward + self.gamma * np.max(
|
||||
self.Q_table[next_state, :]) # Q_table-learning
|
||||
self.Q_table[state, action] += self.lr * (Q_target - Q_predict) # 修正q
|
||||
def save(self,path):
|
||||
np.save(path+"Q_table.npy", self.Q_table)
|
||||
def load(self, path):
|
||||
self.Q_table = np.load(path+"Q_table.npy")
|
||||
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 23 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 36 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 13 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 19 KiB |
@@ -1,84 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-29 17:01:43
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import gym
|
||||
import datetime
|
||||
|
||||
from envs.gridworld_env import CliffWalkingWapper
|
||||
from QLearning.agent import QLearning
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.algo = 'Qlearning'
|
||||
self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
|
||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.eval_eps = 30
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # learning rate
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed)
|
||||
state_dim = env.observation_space.n
|
||||
action_dim = env.action_space.n
|
||||
agent = QLearning(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
state = next_state # 存储上一个观察值
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
env,agent = env_agent_config(cfg,seed=15)
|
||||
cfg.model_path = './'+'QLearning/outputs/CliffWalking-v0/20210429-165825/models'+'/'
|
||||
cfg.result_path = './'+'QLearning/outputs/CliffWalking-v0/20210429-165825/results'+'/'
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -5,14 +5,14 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-06 17:04:38
|
||||
LastEditTime: 2021-09-12 01:29:40
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前路径
|
||||
parent_path=os.path.dirname(curr_path) # 父路径,这里就是我们的项目路径
|
||||
sys.path.append(parent_path) # 由于需要引用项目路径下的其他模块比如envs,所以需要添加路径到sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
@@ -20,49 +20,49 @@ import datetime
|
||||
|
||||
from envs.gridworld_env import CliffWalkingWapper
|
||||
from QLearning.agent import QLearning
|
||||
from common.plot import plot_rewards
|
||||
from common.plot import plot_rewards,plot_rewards_cn
|
||||
from common.utils import save_results,make_dir
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
class QlearningConfig:
|
||||
'''训练相关参数'''
|
||||
def __init__(self):
|
||||
self.algo = 'Qlearning'
|
||||
self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
|
||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.eval_eps = 30
|
||||
self.algo = 'Q-learning' # 算法名称
|
||||
self.env = 'CliffWalking-v0' # 环境名称
|
||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # learning rate
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
self.lr = 0.05 # 学习率
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed)
|
||||
state_dim = env.observation_space.n
|
||||
action_dim = env.action_space.n
|
||||
agent = QLearning(state_dim,action_dim,cfg)
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.n # 状态维度
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
agent = QLearning(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start to train !')
|
||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average reward
|
||||
ma_rewards = [] # 滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
while True:
|
||||
action = agent.choose_action(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||
agent.update(state, action, reward, next_state, done) # Q-learning算法更新
|
||||
state = next_state # 存储上一个观察值
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
@@ -71,20 +71,18 @@ def train(cfg,env,agent):
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print("Episode:{}/{}: reward:{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
|
||||
print('Complete training!')
|
||||
print("回合数:{}/{},奖励{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
|
||||
print('完成训练!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
print('Start to eval !')
|
||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||
rewards = [] # 记录所有episode的reward
|
||||
ma_rewards = [] # 滑动平均的reward
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 滑动平均的奖励
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合)
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
@@ -97,23 +95,26 @@ def eval(cfg,env,agent):
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
|
||||
print('Complete evaling!')
|
||||
print(f"回合数:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
make_dir(cfg.result_path,cfg.model_path) # 创建文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) # 保存结果
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
# # 测试
|
||||
# env,agent = env_agent_config(cfg,seed=10)
|
||||
# agent.load(path=cfg.model_path) # 加载模型
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user