This commit is contained in:
JohnJim0816
2021-03-23 19:42:33 +08:00
parent 1ab35d985e
commit 4f8cf2a82a
4 changed files with 127 additions and 37 deletions

View File

@@ -1,5 +1,5 @@
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_cn.md)
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_en.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)
## 写在前面
@@ -18,27 +18,29 @@
## 运行环境
python 3.7.9、pytorch 1.6.0、gym 0.18.0
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
## 使用说明
本repo使用到的[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md)在各算法目录下也有README说明
对应算法文件夹下运行```main.py```即可
## 算法进度
| 算法名称 | 相关论文材料 | 备注 | 进度 |
| :----------------------------------------------------------: | :---------------------------------------------------------: | :----------------------------------------------------------: | :--: |
| On-Policy First-Visit MC | | | OK |
| Q-Learning | | | OK |
| SARSA | | | OK |
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
| DoubleDQN | | 效果不好,待改进 | OK |
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
| PolicyGradient | | | OK |
| A2C | | | OK |
| [PPO](https://github.com/JohnJim0816/rl-tutorials/tree/master/PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [PPO算法实战](https://blog.csdn.net/JohnJim0/article/details/115126363) | OK |
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
| 算法名称 | 相关论文材料 | 环境 | 备注 |
| :--------------------------------------: | :---------------------------------------------------------: | ------------------------------------- | :--------------------------------: |
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | 效果不好,待改进 |
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
| A2C | | [CartPole-v0](./envs/gym_info.md) | |
| A3C | | | |
| SAC | | | |
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
| GAIL | | | |